Разное

Функции углеводов с примерами: Функции углеводов – основные в организме человека и клетке в таблице

Содержание

§ 1. Классификация и функции углеводов

Глава I. УГЛЕВОДЫ

§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных.  В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим.  Первые представители этих веществ описывались суммарной формулой СmH2nOn или Cm(H2O)n. Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

 

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы. Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С3), тетрозы (С4), пентозы (С5), гексозы (С6) и т.д.: 

 

Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды, или полиозы)  представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu2+, Ag+) делят на восстанавливающие и невосстанавливающие. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды. Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:

Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим  с пищей, является крахмал. Он содержится  в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются  расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

,

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях: 

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу, катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

 

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым  мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин. Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают  бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

 

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

,

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

Функции углеводов | Химическая энциклопедия

В живых организмах углеводы выполняют различные функции, но основными являются энергетическая и строительная.

Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов – углекислый газ и вода.

Значительная роль углеводов в энергетическом балансе живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет важнейшее значение для живых организмов, живущих в условиях дефицита кислорода. Резервом глюкозы являются полисахариды (крахмал и гликоген).

Структурная (строительная) функция углеводов заключается в том, что они используются в качестве строительного материала. Оболочки клеток растений в среднем на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому оболочки растительных клеток надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является компонентом внешнего скелета членистоногих и клеточных оболочек некоторых грибов и протистов.

Некоторые олигосахариды входят в состав цитоплазматической мембраны клеток животных и образуют надмембранный комплекс – гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: они воспринимают сигналы из окружающей среды и передают их в клетку.

Метаболическая функция состоит в том, что моносахариды являются основой для синтеза многих органических веществ в клетках организмов – полисахаридов, нуклеотидов, спиртов, аминокислот и др.

Запасающая функция заключается в том, что полисахариды являются запасными питательными веществами всех организмов, играя роль важнейших поставщиков энергии. Запасным питательным веществом у растений является крахмал, у животных и грибов – гликоген. В корнях и клубнях некоторых растений, например, георгинов, запасается инулин (полимер фруктозы).

Углеводы выполняют и защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении деревьев, например, вишен, слив) являются производными моносахаридов. Они препятствуют проникновению в раны болезнетворных микроорганизмов. Твердые клеточные оболочки протистов, грибов и покровы членистоногих, в состав которых входит хитин, тоже выполняют защитную функцию.



Вам необходимо включить JavaScript, чтобы проголосовать

Строение и функции углеводов

Углеводы, наряду с белками, жирами и нуклеиновыми кислотами, являются основными органическими веществами, составляющими живые организмы. Название углеводов происходит от углерода (C) и воды (H2O), так как их формулу можно записать как Cn(H2O)m. Структурная же формула содержит карбонильную группу (-C=O) и несколько гидроксильных групп (-OH).

Поставщиком углеводов для всех живых организмов является процесс фотосинтеза. Поскольку его осуществляют растения, то далее по пищевым цепям углеводы переходят животным организмам и усваиваются ими. Углеводов больше всего по массе по сравнению с другими органическими веществами. В клетках животных углеводов не так много (менее 5%), а вот в клетках растений больше (иногда до 90% в запасающей ткани).

Углеводы делят на моносахариды, олигосахариды и полисахариды. Среди олигосахаридов наибольшее значение имеют дисахариды, поэтому часто углеводы классифицируют так: моносахариды, дисахариды, полисахариды.

Моносахариды состоят из одной мономерной единицы и не гидролизуются с образованием более простых углеводов. Мономеры углеводов весьма разнообразны (из-за немного отличающегося строения). Обычно моносахариды живых организмов — это кольцевые углеродные цепи, состоящие из пяти (пентозы) или шести (гексозы) атомов углерода (из них один атом C не входит в кольцо, а входит в карбоксильную группу).

Наиболее важными моносахаридами являются рибоза и дезоксирибоза (входят в состав нуклеиновых кислот), глюкоза (источник энергии), фруктоза.

Дисахариды состоят из двух мономерных единиц, можно сказать, из двух моносахаридов. Объединение происходит через гидроксильные группы с отщеплением воды. Наиболее известный дисахарид — это сахароза (сахар). Ее молекула состоит из остатков глюкозы и фруктозы. А из двух остатков глюкозы состоит мальтоза.

Простые углеводы выполняют в основном пластическую (входят в состав АТФ, ДНК, РНК) и энергетические функции. Также регулируют осмотическое давление в организме, выполняют рецепторную функцию (входят в состав клеточных рецепторов).

Полисахариды состоят из более чем десятка мономерных единиц. К ним относятся крахмал, гликоген, целлюлоза, хитин и другие.

Крахмал (в растениях) и гликоген (в животных и грибах) накапливаются в организмах в качестве запасного питательного вещества. Крахмал отличается от гликогена менее ветвистой структурой.

Целлюлоза (также называемая клетчаткой) образует стенки растительных клеток. Таким образом она выполняет структурную и защитную функции. Такую же функцию выполняет хитин у животных и грибов. Однако у животных он образует не клеточные стенки, а наружный скелет. У грибов же хитин входит в состав клеточных стенок.

Строение, примеры и функции углеводов

Количество просмотров публикации Строение, примеры и функции углеводов — 907

Строение и функции углеводов и липидов

Вода

Вода — самое распространенное неорганическое соединœение. Содержание воды составляет от 10% (зубная эмаль) до 90% массы клетки (развивающийся эмбрион). Без воды жизнь невозможна, биологическое значение воды определяется ее химическими и физическими свойствами.

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Та часть молекулы, где находится водород, заряжена положительно, часть, где находится кислород, — отрицательно, в связи с этим молекула воды является диполем. Между диполями воды образуются водородные связи. Физические свойства воды: прозрачна, максимальная плотность — при 4 °С, высокая теплоемкость, практически не сжимается; чистая вода плохо проводит тепло и электричество, замерзает при 0 °С, кипит при 100 °С и т.д. Химические свойства воды: хороший растворитель, образует гидраты, вступает в реакции гидролитического разложения, взаимодействует со многими оксидами и т.д. По отношению к способности растворяться в воде различают: гидрофильные вещества — хорошо растворимые, гидрофобные вещества — практически нерастворимые в воде.

Биологическое значение воды:

· является основой внутренней и внутриклеточной среды,

· обеспечивает поддержание пространственной структуры,

· обеспечивает транспорт веществ,

· гидратирует полярные молекулы,

· служит растворителœем и средой для диффузии,

· участвует в реакциях фотосинтеза и гидролиза,

· способствует охлаждению организма,

· является средой обитания для многих организмов,

· способствует миграциям и распространению семян, плодов, личиночных стадий,

· является средой, в которой происходит оплодотворение,

· у растений обеспечивает транспирацию и прорастание семян,

· способствует равномерному распределœению тепла в организме и мн. др.

Углеводы — органические соединœения, состав которых в большинстве случаев выражается общей формулой Cn(h3O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, исходя из числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, бывают представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др.
Размещено на реф.рф
Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами состоит по сути в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

один из самых распространенных моносахаридов,

важнейший источник энергии для всœех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),

мономер многих олигосахаридов и полисахаридов,

необходимый компонент крови.

Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. Учитывая зависимость отчисла остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, принято называть гликозидной.

Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всœех млекопитающих (2–8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесинœе — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединœения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединœения углеводов и белков.

Функции углеводов

Функция Примеры и пояснения
Энергетическая Основной источник энергии для всœех видов работ, происходящих в клетках. При расщеплении 1 г углеводов выделяется 17,6 кДж.
Структурная Из целлюлозы состоит клеточная стенка растений, из муреина — клеточная стенка бактерий, из хитина — клеточная стенка грибов и покровы членистоногих.
Запасающая Резервным углеводом у животных и грибов является гликоген, у растений — крахмал, инулин.
Защитная Слизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека.

углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — запасное вещество животной клетки.

Известны также сложные полисахариды, выполняющие структурные функции в опорных тканях животных (они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность).

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.bestreferat.ru/referat-100195.html

каковы функции углеводов??? — Школьные Знания.com

Помогите прошу!!!!!!!!!!!!!!!!!!!!!!!

срочно помогите кто решит дам еще подарочки

Просто написать так!
1-Природная зона ____
2-Природная зона ____
3-Природная зона ____
4Природная зона ____
ОТДАМ 50 БАЛЛОВ

Пожалуйста помогите… плизз​

Які варіанти статевого розмноження вам відомі?

Чи можливо вважати кон’югацію статевим розмноженням? Чому?

Вивчіть особливості будови і цикл розвитку зозулиного льону звичайного. На гербарному матеріалі та рисунках розгляньте зовнішню будову та цикл розвитк

у зозулиного льону. Дайте відповіді на питання:
Зелена рослина представлена _______________________________________________,
до ґрунту прикріплюється__________________________________________________.
На верхівці жіночих особин знаходяться______________________________________,
де утворюються______________________________. На верхівці чоловічих особин знаходяться_______________________________, де утворюються________________. Обов’язковою умовою запліднення __________________________________________. Спори утворюються шляхом_____________________________ і мають такий набір хромосом_____________________________________.Із спор проростає таке покоління________________________________________________________________.

Помогите пожалуйста со степенем Саморегуляции!
остальное не нужно, срочно надо!

Який орган забезпечує дощовому черв’яку поглинання їжі?

СРОЧНО!!!!  малазийского магадука жадность доминирует над щедростью и наследуется как доминантный аутосомный признак, а клептомания (склонность к воро

вству) – как рецессивный, сцепленный с Х-хромосомой признак. Самцы гетерогаметны по полу. Определите генотипы родительских форм, генотипы и фенотипы потомства, появившегося от скрещивания жадной, не склонной к клептомании гомозиготной самки малазийского магадука с щедрым самцом – клептоманом. Какова вероятность появления жадного самца – клептомана?​

Строение, примеры и функции углеводов

Строение, примеры и функции углеводов

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. 

Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

  1. один из самых распространенных моносахаридов,

  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),

  3. мономер многих олигосахаридов и полисахаридов,

  4. необходимый компонент крови.   

Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной.

Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. 

Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Строение крахмала

Крахмал состоит из 2 полисахаридов, построенных из остатков циклической a-глюкозы.

Как видно, соединение молекул глюкозы происходит с участием наиболее реакционноспособных гидроксильных групп, а исчезновение последних исключает возможность образования альдегидных групп, и они в молекуле крахмала отсутствуют. Поэтому крахмал не дает реакцию «серебряного зеркала».

Крахмал состоит не только из линейных молекул, но и из молекул разветвленной структуры. Этим объясняется зернистое строение крахмала.

В состав крахмала входят:

  • амилоза (внутренняя часть крахмального зерна) — 10-20%;

  • амилопектин (оболочка крахмального зерна) — 80-90%.

Амилоза

Амилоза растворима в воде и представляет собой линейный полимер, в котором остатки α–глюкозы связаны друг с другом через первый и четвертый атомы углерода (α-1,4-гликозидными связями).

Цепь амилозы включает 200 — 1000 остатков a-глюкозы (средняя мол. масса 160 000) .

Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев a-глюкозы.

Амилопектин

В отличие от амилозы, амилопектин не растворим в воде, и имеет разветвленное строение.

Подавляющее большинство глюкозных остатков в амилопектине связаны, как и в амилозе α-1,4-гликозидными связями. Однако в точках разветвлений цепи имеются α-1,6-гликозидные связи.

Молекулярная масса амилопектина достигает 1-6 млн.

Молекулы амилопектина также довольно компактны, так как имеют сферическую форму.

Биологическая роль крахмала. Гликоген

Крахмал – главное запасное питательное вещество растений, основной источник резервной энергии в растительных клетках.

 

Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в то же время под действием ферментов легко могут отщепляться, как только возникает потребность в источнике энергии.

Амилоза и амилопектин гидролизуются под действием кислот или ферментов до глюкозы, которая служит непосредственным источником энергии для клеточных реакций, входит в состав крови и тканей, участвует в обменных процессах.

Гликоген (животный крахмал) – полисахарид, молекулы которого построены из большого числа остатков α–глюкозы. Он имеет сходное строение с амилопектином, но отличается от него большей разветвленностью цепей, а также большей молекулярной массой.

Содержится гликоген главным образом в печени и в мышцах.

Гликоген – белый аморфный порошок, хорошо растворяется даже в холодной воде, легко гидролизуется под действием кислот и ферментов, образуя в качестве промежуточных веществ декстрины, мальтозу и при полном гидролизе – глюкозу.

Превращение крахмала в организме человека и животных

Нахождение в природе

Крахмал широко распространен в природе. Он образуется в растениях в процессе фотосинтезе и накапливается в клубнях, корнях, семенах, а также в листьях и стеблях.

Крахмал содержится в растениях в виде крахмальных зерен. Наиболее богато крахмалом зерно злаков: риса (до 80%), пшеницы (до 70%), кукурузы (до 72%), а также клубни картофеля (до 25%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, в злаках они плотно склеены белковым веществом клейковиной.

Физические свойства 

Крахмал – белое аморфное вещество, без вкуса и запаха, нерастворимое в холодной воде, в горячей воде набухает и частично растворяется, образуя вязкий коллоидный раствор (крахмальный клейстер).

Крахмал существует в двух формах: амилоза – линейный полимер, растворимый в горячей воде, амилопектин – разветвлённый полимер, не растворимый в воде, лишь набухает.

Химические свойства крахмала

Химические свойства крахмала объясняются его строением.

Крахмал не дает реакцию «серебряного зеркала», однако ее дают продукты его гидролиза.

1. Гидролиз крахмала

При нагревании в кислой среде крахмал гидролизуется с разрывом связей между остатками α-глюкозы. При этом образуется ряд промежуточных продуктов, в частности мальтоза. Конечным продуктом гидролиза является глюкоза:

Процесс гидролиза протекает ступенчато, схематически его можно изобразить так:

«Кислотный гидролиз крахмала»

Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1911 г. русский ученый К.Кирхгоф (реакция Кирхгофа).

 

2. Качественная реакция на крахмал

Так как молекула амилозы представляет собой спираль, то при взаимодействии амилозы с йодом в водном растворе молекулы йода входят во внутренний канал спирали, образуя так называемое соединение включения.

Раствор йода окрашивает крахмал в синий цвет. При нагревании окрашивание исчезает (комплекс разрушается), при охлаждении появляется вновь.

6Н10О5)nI2 → I2 6Н10О5)n

синее окрашивание

3.4: Функции углеводов в организме

  1. Последнее обновление
  2. Сохранить как PDF
  1. Производство энергии
  2. Накопление энергии
  3. Создание макромолекул
  4. Сохранение белка
  5. Липидный метаболизм
    1. Ключевые выводы
    2. Начальные обсуждения

Навыки для развития

  • Перечислите четыре основные функции углеводов в организме человека.

В организме человека есть пять основных функций углеводов.Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют метаболизму липидов.

Производство энергии

Основная роль углеводов — снабжать энергией все клетки тела. Многие клетки предпочитают глюкозу в качестве источника энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низким уровням глюкозы в крови, потому что он использует только глюкозы для выработки энергии и функционирования (если только он не находится в условиях крайнего голодания).Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями. Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах. Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания.Клеточное дыхание — это в основном контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных стадиях, чтобы замедлить высвобождение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

Первая стадия распада глюкозы называется гликолизом, который происходит в запутанной серии из десяти стадий ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями.Один атом углерода и два атома кислорода удаляются, что дает больше энергии. Энергия этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

Рисунок 3.4.1: Клеточное дыхание — это процесс захвата энергии из глюкозы.

Накопитель энергии

Если у тела уже достаточно энергии для поддержания своих функций, избыток глюкозы хранится в виде гликогена (большая часть которого хранится в мышцах и печени). Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что обеспечивает быстрое распространение глюкозы, когда она необходима для выработки клеточной энергии (рис. 3.4.2).

Рис. 3.4.2: Структура гликогена делает возможным его быструю мобилизацию в свободную глюкозу для питания клеток.

Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий — 3000 в мышечной ткани и 1000 в печени.Продолжительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Это называется «ударом о стену» или «ударом о стену» и характеризуется утомляемостью и снижением работоспособности. Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы. После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут незначительно увеличить свой запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований.Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровый забег ради развлечения, не нужно есть большую тарелку макарон перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

Печень, как и мышца, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленной энергией глюкозы другим тканям организма, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности.Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи. Когда запасы гликогена в печени истощаются, глюкоза образуется из аминокислот, полученных в результате разрушения белков, чтобы поддерживать метаболический гомеостаз.

Строительные макромолекулы

Хотя большая часть абсорбированной глюкозы используется для производства энергии, некоторая часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ (Рисунок 3.4.3). Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме. Если вся энергия, способность накапливать гликоген и потребности организма в наращивании удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с слишком высоким содержанием углеводов и калорий может прибавить лишнего веса — тема, которая будет обсуждаться в ближайшее время.

Рис. 3.4.3: Дезоксирибоза из молекулы сахара используется для построения основы ДНК.© Shutterstock

Экономный белок

В ситуации, когда недостаточно глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот. Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие достаточного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

Липидный обмен

По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется.Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии. Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз — это нарушение обмена веществ, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела — это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания.Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникать у алкоголиков, людей с недостаточным питанием и у людей с диабетом 1 типа. Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

Углеводы имеют решающее значение для поддержки самой основной функции жизни — производства энергии. Без энергии не происходит ни один из других жизненных процессов.Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, поскольку их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.

Основные выводы

  • Четыре основных функции углеводов в организме — обеспечивать энергию, накапливать энергию, строить макромолекулы и сберегать белок и жир для других целей.
  • Энергия глюкозы хранится в виде гликогена, большая часть которого находится в мышцах и печени.Печень использует свой запас гликогена, чтобы поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи. Некоторая глюкоза также используется в качестве строительных блоков важных макромолекул, таких как РНК, ДНК и АТФ.
  • Наличие достаточного количества глюкозы в организме предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

Обсуждение стартеров

  1. Обсудите две причины, по которым важно включать углеводы в свой рацион.
  2. Почему организму необходимо экономить белок?

Функции углеводов в организме

Последнее обновление: 14 января 2020 г.

В этой части нашего обзора углеводов мы объясняем различные типы и основные функции углеводов, включая сахара. Чтобы узнать, как потребление углеводов связано со здоровьем, обратитесь к статье «Углеводы полезны или вредны для вас?».

1. Введение

Наряду с жирами и белками углеводы являются одним из трех макроэлементов в нашем рационе, основная функция которых — обеспечивать организм энергией. Они встречаются во многих различных формах, таких как сахар и пищевые волокна, а также во многих различных продуктах, таких как цельнозерновые, фрукты и овощи. В этой статье мы исследуем разнообразие углеводов, содержащихся в нашем рационе, и их функции.

2. Что такое углеводы?

По своей сути углеводы состоят из строительных блоков сахаров, и их можно классифицировать в зависимости от того, сколько сахарных единиц объединено в их молекуле.Глюкоза, фруктоза и галактоза являются примерами однокомпонентных сахаров, также известных как моносахариды. Двухкомпонентные сахара называются дисахаридами, среди которых наиболее широко известны сахароза (столовый сахар) и лактоза (молочный сахар). Моносахариды и дисахариды обычно называют простыми углеводами. Длинноцепочечные молекулы, такие как крахмалы и пищевые волокна, известны как сложные углеводы. На самом деле, однако, есть более явные различия. В таблице 1 представлен обзор основных типов углеводов в нашем рационе.

Таблица 1. Примеры углеводов, основанные на различных классификациях.

КЛАСС

ПРИМЕРЫ

Моносахариды

Глюкоза, фруктоза, галактоза

Дисахариды

Сахароза, лактоза, мальтоза

Олигосахариды

Фруктоолигосахариды, мальтоолигосахариды

Полиолы

Изомальт, мальтит, сорбит, ксилит, эритрит

Полисахариды крахмала

Амилоза, амилопектин, мальтодекстрины

Некрахмальные полисахариды
(пищевые волокна)

Целлюлоза, пектины, гемицеллюлозы, камеди, инулин

Углеводы также известны под следующими названиями, которые обычно относятся к определенным группам углеводов 1 :

  • сахара
  • простых и сложных углеводов
  • устойчивый крахмал
  • пищевые волокна
  • пребиотики
  • внутренних и добавленных сахаров

Различные названия происходят из-за того, что углеводы классифицируются в зависимости от их химической структуры, а также в зависимости от их роли или источника в нашем рационе. Даже ведущие органы здравоохранения не имеют согласованных общих определений для различных групп углеводов 2 .

3. Виды углеводов

3.1. Моносахариды, дисахариды и полиолы

Простые углеводы, содержащие одну или две единицы сахара, также известны как сахара. Примеры:

  • Глюкоза и фруктоза: моносахариды, которые содержатся во фруктах, овощах, меде, а также в пищевых продуктах, таких как глюкозно-фруктозные сиропы
  • Столовый сахар или сахароза представляет собой дисахарид глюкозы и фруктозы и естественным образом встречается в сахарной свекле, сахарном тростнике и фруктах
  • Лактоза, дисахарид, состоящий из глюкозы и галактозы, является основным углеводом молока и молочных продуктов
  • Мальтоза представляет собой дисахарид глюкозы, содержащийся в сиропах из солода и крахмала

Моносахаридные и дисахаридные сахара, как правило, добавляются в пищевые продукты производителями, поварами и потребителями и называются «добавленными сахарами».Они также могут присутствовать в виде «свободных сахаров», которые естественным образом содержатся в меде и фруктовых соках.

Полиолы, или так называемые сахарные спирты, также сладкие и могут использоваться в пищевых продуктах аналогично сахару, но имеют более низкую калорийность по сравнению с обычным столовым сахаром (см. Ниже). Они действительно встречаются в природе, но большинство используемых нами полиолов получают путем преобразования сахаров. Сорбитол является наиболее часто используемым полиолом в продуктах питания и напитках, в то время как ксилит часто используется в жевательных резинках и мятных конфетах. Изомальт — это полиол, производимый из сахарозы, часто используемый в кондитерских изделиях.При употреблении в пищу в слишком больших количествах полиолы могут оказывать слабительное действие.

Если вы хотите узнать больше о сахарах в целом, прочтите нашу статью «Сахара: ответы на общие вопросы», статью «Решение общих вопросов о подсластителях» или изучите возможности и трудности замены сахара в выпечке и полуфабрикатах ( «Сахар с точки зрения пищевых технологий»).

3.2. Олигосахариды

Всемирная организация здравоохранения (ВОЗ) определяет олигосахариды как углеводы с 3-9 сахарными единицами, хотя другие определения допускают немного более длинные цепи.Наиболее известными из них являются олигофруктаны (или, в собственном научном смысле, фруктоолигосахариды), которые содержат до 9 единиц фруктозы и естественным образом встречаются в овощах с низкой сладостью, таких как артишоки и лук. Рафиноза и стахиоза — два других примера олигосахаридов, которые содержатся в некоторых бобовых, зернах, овощах и меде. Большинство олигосахаридов не расщепляются на моносахариды пищеварительными ферментами человека и вместо этого используются микробиотой кишечника (дополнительную информацию см. В нашем материале о пищевых волокнах).

3.3. Полисахариды

Десять или более, а иногда даже несколько тысяч сахарных единиц необходимы для образования полисахаридов, которые обычно делятся на два типа:

  • Крахмал, который является основным запасом энергии в корнеплодах, таких как лук, морковь, картофель и цельнозерновые продукты. Он имеет цепи глюкозы разной длины, более или менее разветвленные, и встречается в гранулах, размер и форма которых различаются в зависимости от растений, которые их содержат. Соответствующий полисахарид у животных называется гликогеном.Некоторые крахмалы могут перевариваться только микробиотой кишечника, а не механизмами нашего собственного тела: они известны как устойчивые крахмалы.
  • Некрахмальные полисахариды, которые входят в группу пищевых волокон (хотя некоторые олигосахариды, такие как инулин, также считаются диетическими волокнами). Примерами являются целлюлоза, гемицеллюлозы, пектины и камеди. Основными источниками этих полисахаридов являются овощи и фрукты, а также цельнозерновые продукты. Отличительной чертой некрахмальных полисахаридов и фактически всех пищевых волокон является то, что люди не могут их переваривать; следовательно, их среднее энергетическое содержание ниже по сравнению с большинством других углеводов. Однако некоторые типы клетчатки могут метаболизироваться кишечными бактериями, в результате чего образуются полезные для нашего организма соединения, такие как короткоцепочечные жирные кислоты. Узнайте больше о пищевых волокнах и их важности для нашего здоровья в нашей статье о «цельнозерновых» и «диетических волокнах».

Далее мы будем иметь в виду «сахара», когда говорим о моно- и дисахаридах, и «волокна», когда говорим о некрахмальных полисахаридах.

4. Функции углеводов в нашем организме

Углеводы — неотъемлемая часть нашего рациона.Наиболее важно то, что они обеспечивают энергией самые очевидные функции нашего тела, такие как движение или мышление, а также «фоновые» функции, которые большую часть времени мы даже не замечаем 1 . Во время пищеварения углеводы, состоящие из более чем одного сахара, расщепляются на свои моносахариды пищеварительными ферментами, а затем непосредственно всасываются, вызывая гликемический ответ (см. Ниже). Организм напрямую использует глюкозу в качестве источника энергии в мышцах, мозговых и других клетках.Некоторые углеводы не могут быть расщеплены, и они либо ферментируются кишечными бактериями, либо проходят через кишечник без изменений. Интересно, что углеводы также играют важную роль в структуре и функциях наших клеток, тканей и органов.

4.1. Углеводы как источник энергии и их хранение

Углеводы, расщепленные в основном на глюкозу, являются предпочтительным источником энергии для нашего тела, поскольку клетки нашего мозга, мышц и всех других тканей напрямую используют моносахариды для удовлетворения своих энергетических потребностей.В зависимости от вида один грамм углеводов обеспечивает разное количество энергии:

  • Крахмал и сахар являются основными энергетическими углеводами и обеспечивают 4 килокалории (17 килоджоулей) на грамм
  • Полиолы содержат 2,4 килокалории (10 килоджоулей) (эритритол вообще не усваивается, и, следовательно, дает 0 калорий)
  • Пищевые волокна 2 килокалории (8 килоджоулей)

Моносахариды непосредственно абсорбируются тонким кишечником в кровоток, откуда они транспортируются к нуждающимся клеткам. Некоторые гормоны, включая инсулин и глюкагон, также являются частью пищеварительной системы. Они поддерживают уровень сахара в крови, удаляя или добавляя глюкозу в кровоток по мере необходимости.

Если не использовать напрямую, организм превращает глюкозу в гликоген, полисахарид, подобный крахмалу, который хранится в печени и мышцах в качестве легкодоступного источника энергии. Когда это необходимо, например, между приемами пищи, ночью, во время подъемов физической активности или во время коротких периодов голодания, наш организм превращает гликоген обратно в глюкозу, чтобы поддерживать постоянный уровень сахара в крови.

Мозг и красные кровяные тельца особенно зависят от глюкозы как источника энергии и могут использовать другие формы энергии из жиров в экстремальных условиях, например, в очень длительные периоды голодания. Именно по этой причине уровень глюкозы в крови должен постоянно поддерживаться на оптимальном уровне. Примерно 130 г глюкозы необходимо в день только для удовлетворения энергетических потребностей мозга взрослого человека.

4,2. Гликемический ответ и гликемический индекс

Когда мы едим пищу, содержащую углеводы, уровень глюкозы в крови повышается, а затем понижается, и этот процесс известен как гликемический ответ.Он отражает скорость переваривания и всасывания глюкозы, а также влияние инсулина на нормализацию уровня глюкозы в крови. На скорость и продолжительность гликемического ответа влияет ряд факторов:

  • Сама еда:
    • Тип сахаров, образующих углевод; например фруктоза имеет более низкий гликемический ответ, чем глюкоза, а сахароза имеет более низкий гликемический ответ, чем мальтоза
    • Строение молекулы; например крахмал с большим количеством разветвлений легче расщепляется ферментами и, следовательно, легче усваивается, чем другие
    • Используемые методы приготовления и обработки
    • Количество других питательных веществ в пище, таких как жир, белок и клетчатка
  • (метаболические) обстоятельства у каждого человека:
    • Степень жевания (механическое нарушение)
    • Скорость опорожнения желудка
    • Время прохождения через тонкий кишечник (частично зависит от пищи)
    • Сам метаболизм
    • Время приема пищи

Влияние различных пищевых продуктов (а также технологии обработки пищевых продуктов) на гликемический ответ классифицируется относительно стандарта, обычно белого хлеба или глюкозы, в течение двух часов после еды. Это измерение называется гликемическим индексом (GI). GI 70 означает, что еда или питье вызывают 70% ответа глюкозы в крови, который можно было бы наблюдать с таким же количеством углеводов из чистой глюкозы или белого хлеба; однако большую часть времени углеводы едят как смесь вместе с белками и жирами, которые все влияют на GI.

Продукты с высоким ГИ вызывают большую реакцию глюкозы в крови, чем продукты с низким ГИ. В то же время продукты с низким ГИ перевариваются и усваиваются медленнее, чем продукты с высоким ГИ.В научном сообществе ведется много дискуссий, но в настоящее время недостаточно данных, чтобы предположить, что диета, основанная на продуктах с низким ГИ, связана со сниженным риском развития метаболических заболеваний, таких как ожирение и диабет 2 типа.

ГЛИКЕМИЧЕСКИЙ ИНДЕКС НЕКОТОРЫХ ОБЫЧНЫХ ПРОДУКТОВ (с использованием глюкозы в качестве стандарта)

Продукты с очень низким ГИ (≤ 40)

Сырое яблоко
Чечевица
Соевые бобы
Фасоль
Коровье молоко
Морковь (вареная)
Ячмень

Продукты с низким ГИ (41-55)

Лапша и макаронные изделия
Яблочный сок
Сырые апельсины / апельсиновый сок
Финики
Сырой банан
Йогурт (фрукты)
Цельнозерновой хлеб
Клубничное варенье
Сладкая кукуруза
Шоколад

Продукты питания с промежуточным ГИ (56-70)

Коричневый рис
Овсяные хлопья
Безалкогольные напитки
Ананас
Мед
Хлеб на закваске

Продукты с высоким ГИ (> 70)

Белый и непросеянный хлеб
Вареный картофель
Кукурузные хлопья
Картофель фри
Картофельное пюре
Белый рис
Рисовые крекеры

4.3. Функция кишечника и пищевые волокна

Хотя наш тонкий кишечник неспособен переваривать пищевые волокна, клетчатка помогает обеспечить хорошее функционирование кишечника, увеличивая физическую массу кишечника и тем самым стимулируя прохождение через кишечник. Когда неперевариваемые углеводы попадают в толстую кишку, некоторые типы клетчатки, такие как камеди, пектины и олигосахариды, расщепляются микрофлорой кишечника. Это увеличивает общую массу кишечника и благотворно влияет на состав микрофлоры кишечника.Это также приводит к образованию продуктов жизнедеятельности бактерий, таких как жирные кислоты с короткой цепью, которые выделяются в толстой кишке и благотворно влияют на наше здоровье (дополнительную информацию см. В наших статьях о пищевых волокнах).

5. Резюме

Углеводы являются одним из трех макроэлементов в нашем рационе и, как таковые, необходимы для правильного функционирования организма. Они бывают разных форм, от сахара вместо крахмала до пищевых волокон, и присутствуют во многих продуктах, которые мы едим. Если вы хотите узнать больше о том, как они влияют на наше здоровье, прочтите нашу статью «Углеводы полезны или вредны для вас?».

Список литературы

  1. Каммингс Дж. Х. и Стивен А. М. (2007). Терминология и классификация углеводов. Европейский журнал клинического питания 61: S5-S18.
  2. Портал знаний JRC Европейской комиссии, укрепление здоровья и профилактика заболеваний. По состоянию на 17 октября 2019 г.
    1. Структура и функции углеводов

      Результаты обучения

      • Различия между моносахаридами, дисахаридами и полисахаридами
      • Определите несколько основных функций углеводов

      Большинство людей знакомы с углеводами, одним типом макромолекул, особенно когда речь идет о том, что мы едим.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «загружают углеводы» перед важными соревнованиями, чтобы у них было достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, в частности, через глюкозу, простой сахар, который является компонентом крахмала и ингредиентом многих основных продуктов питания. Углеводы также выполняют другие важные функции у людей, животных и растений.

      Углеводы могут быть представлены стехиометрической формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компонентами являются углерод («углевод») и компоненты воды (отсюда «гидрат»). Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

      Моносахариды

      Моносахариды ( mono — = «один»; sacchar — = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза. В моносахаридах количество атомов углерода обычно составляет от трех до семи. Большинство названий моносахаридов оканчиваются на суффикс — ose . Если сахар имеет альдегидную группу (функциональная группа со структурой R-CHO), он известен как альдоза, а если у него есть кетонная группа (функциональная группа со структурой RC (= O) R ‘), он известен как кетоза.В зависимости от количества атомов углерода в сахаре они также могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и / или гексозы (шесть атомов углерода). См. Рисунок 1 для иллюстрации моносахаридов.

      Рис. 1. Моносахариды классифицируются на основе положения их карбонильной группы и количества атомов углерода в основной цепи. Альдозы имеют карбонильную группу (обозначена зеленым цветом) на конце углеродной цепи, а кетозы имеют карбонильную группу в середине углеродной цепи.Триозы, пентозы и гексозы имеют три, пять и шесть углеродных скелетов соответственно.

      Химическая формула глюкозы: C 6 H 12 O 6 . У человека глюкоза — важный источник энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыточная глюкоза часто хранится в виде крахмала, который катаболизируется (расщепление более крупных молекул клетками) людьми и другими животными, которые питаются растениями.

      Галактоза и фруктоза — другие распространенные моносахариды: галактоза содержится в молочном сахаре, а фруктоза — во фруктовых сахарах. Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они отличаются структурно и химически (и известны как изомеры) из-за разного расположения функциональных групп вокруг асимметричный углерод; все эти моносахариды имеют более одного асимметричного углерода (рис. 2).

      Практический вопрос

      Рис. 2. Глюкоза, галактоза и фруктоза — это гексозы. Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C6h22O6), но другое расположение атомов.

      Что это за сахара, альдоза или кетоза?

      Показать ответ

      Глюкоза и галактоза — альдозы. Фруктоза — это кетоза.

      Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевых формах (рис. 3).Глюкоза в кольцевой форме может иметь два разных расположения гидроксильной группы (-ОН) вокруг аномерного углерода (углерод 1, который становится асимметричным в процессе образования кольца). Если гидроксильная группа находится ниже углеродного номера 1 в сахаре, говорят, что она находится в положении альфа ( α ), а если она выше плоскости, говорят, что она находится в положении бета ( β ). .

      Рис. 3. Моносахариды из пяти и шести атомов углерода находятся в равновесии между линейной и кольцевой формами.Когда кольцо образуется, боковая цепь, которую оно замыкает, фиксируется в положении α или β. Фруктоза и рибоза также образуют кольца, хотя они образуют пятичленные кольца в отличие от шестичленного кольца глюкозы.

      Дисахариды

      Дисахариды ( ди — = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (также известной как реакция конденсации или синтез дегидратации). Во время этого процесса гидроксильная группа одного моносахарида соединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь.Ковалентная связь, образованная между молекулой углевода и другой молекулой (в данном случае между двумя моносахаридами), известна как гликозидная связь (рис. 4). Гликозидные связи (также называемые гликозидными связями) могут быть альфа- или бета-типа. Альфа-связь образуется, когда группа ОН на углероде-1 первой глюкозы находится ниже плоскости кольца, а бета-связь образуется, когда группа ОН на углероде-1 находится выше плоскости кольца.

      Рис. 4. Сахароза образуется, когда мономер глюкозы и мономер фруктозы соединяются в реакции дегидратации с образованием гликозидной связи.При этом теряется молекула воды. По соглашению атомы углерода в моносахариде нумеруются от концевого углерода, ближайшего к карбонильной группе. В сахарозе гликозидная связь образуется между углеродом 1 в глюкозе и углеродом 2 во фруктозе.

      Общие дисахариды включают лактозу, мальтозу и сахарозу (рис. 5). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

      Рис. 5. Общие дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).

      Полисахариды

      Длинная цепь моносахаридов, связанных гликозидными связями, известна как полисахарид ( поли — = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров. Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.

      Крахмал — это хранимая в растениях форма сахаров, состоящая из смеси амилозы и амилопектина (оба полимера глюкозы). Растения способны синтезировать глюкозу, а избыток глюкозы, превышающий непосредственные потребности растения в энергии, хранится в виде крахмала в различных частях растения, включая корни и семена. Крахмал в семенах служит пищей для зародыша по мере его прорастания, а также может служить источником пищи для людей и животных.Крахмал, потребляемый людьми, расщепляется ферментами, такими как амилазы слюны, на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.

      Крахмал состоит из мономеров глюкозы, которые соединены гликозидными связями α, 1-4 или α 1-6. Цифры 1-4 и 1-6 относятся к числу атомов углерода двух остатков, которые соединились с образованием связи. Как показано на рисунке 6, амилоза представляет собой крахмал, образованный неразветвленными цепями мономеров глюкозы (только α 1-4 связей), тогда как амилопектин представляет собой разветвленный полисахарид ( α 1-6 связей в точках ветвления).

      Рис. 6. Амилоза и амилопектин — две разные формы крахмала. Амилоза состоит из неразветвленных цепей мономеров глюкозы, соединенных α 1,4 гликозидными связями. Амилопектин состоит из разветвленных цепей мономеров глюкозы, соединенных гликозидными связями α 1,4 и α 1,6. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.

      Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы.Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц. Когда уровень глюкозы в крови снижается, гликоген расщепляется с высвобождением глюкозы в процессе, известном как гликогенолиз.

      Целлюлоза — самый распространенный природный биополимер. Клеточная стенка растений в основном состоит из целлюлозы; это обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны гликозидными связями β, 1-4 (рис. 7).

      Рис. 7. В целлюлозе мономеры глюкозы связаны в неразветвленные цепи β 1-4 гликозидными связями. Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.

      Как показано на рисунке 7, каждый второй мономер глюкозы в целлюлозе перевернут, и мономеры плотно упакованы в виде вытянутых длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток.В то время как связь β 1-4 не может быть разрушена пищеварительными ферментами человека, травоядные животные, такие как коровы, коалы, буйволы и лошади, могут с помощью специализированной флоры в их желудке переваривать богатый растительный материал. в целлюлозе и использовать ее в качестве источника пищи. У этих животных определенные виды бактерий и простейших обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу. В аппендиксе пасущихся животных также содержатся бактерии, переваривающие целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных.Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии. Термиты также способны расщеплять целлюлозу из-за присутствия в их телах других организмов, выделяющих целлюлазы.

      Рис. 8. У насекомых есть твердый внешний скелет, сделанный из хитина, типа полисахарида.

      Углеводы выполняют различные функции у разных животных. У членистоногих (насекомых, ракообразных и др.) Есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела (как видно у пчелы на Рисунке 8).

      Этот экзоскелет сделан из биологической макромолекулы хитина, который представляет собой полисахаридсодержащий азот. Он состоит из повторяющихся единиц N-ацетил- β -d-глюкозамина, модифицированного сахара. Хитин также является основным компонентом клеточных стенок грибов; грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.

      Вкратце: структура и функции углеводов

      Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки и обеспечивают структурную поддержку растительным клеткам, грибам и всем членистоногим, включая омаров, крабов, креветок, насекомых и пауков.Углеводы классифицируются как моносахариды, дисахариды и полисахариды в зависимости от количества мономеров в молекуле. Моносахариды связаны гликозидными связями, которые образуются в результате реакций дегидратации, образуя дисахариды и полисахариды с удалением молекулы воды для каждой образованной связи. Глюкоза, галактоза и фруктоза являются обычными моносахаридами, тогда как обычные дисахариды включают лактозу, мальтозу и сахарозу. Крахмал и гликоген, примеры полисахаридов, являются формами хранения глюкозы в растениях и животных соответственно.Длинные полисахаридные цепи могут быть разветвленными или неразветвленными. Целлюлоза является примером неразветвленного полисахарида, тогда как амилопектин, составляющий крахмал, представляет собой сильно разветвленную молекулу. Хранение глюкозы в виде полимеров, таких как крахмал или гликоген, делает ее немного менее доступной для метаболизма; однако это предотвращает его утечку из клетки или создание высокого осмотического давления, которое может вызвать чрезмерное поглощение воды клеткой.

      Внесите свой вклад!

      У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

      Улучшить страницуПодробнее

      Углеводы — определение, структура, типы, примеры, функции

      Последнее обновление: 24 февраля 2020 г., автор: Sagar Aryal

      Что такое углеводы?

      • Углеводы — это группа встречающихся в природе карбонильных соединений (альдегидов или кетонов), которые также содержат несколько гидроксильных групп.
      • Он также может включать их производные, которые образуют такие соединения при гидролизе.
      • Это самые распространенные в природе органические молекулы, также называемые «сахаридами».
      • Углеводы, растворимые в воде и сладкие на вкус, называются «сахарами».

      Структура углеводов

      • Углеводы состоят из углерода, водорода и кислорода.
      • Общая эмпирическая структура углеводов: (CH 2 O) n .
      • Это органические соединения, организованные в форме альдегидов или кетонов с несколькими гидроксильными группами, отходящими от углеродной цепи.
      • Строительными блоками всех углеводов являются простые сахара, называемые моносахаридами.
      • Моносахарид может быть полигидроксиальдегидом (альдозой) или полигидроксикетоном (кетозой).

      Углеводы могут быть структурно представлены в любой из трех форм:

      • Открытая цепная структура.
      • Структура полуацеталя.
      • Структура Хэворта.

      Структура с открытой цепью — Это длинноцепочечная форма углеводов.

      Полуацетальная структура — Здесь 1-й углерод глюкозы конденсируется с -ОН-группой 5-го углерода с образованием кольцевой структуры.

      Структура Хаворта — Наличие пиранозной кольцевой структуры.

      Свойства углеводов

      Физические свойства углеводов

      • Стереоизомерия — Состав, имеющий одинаковую структурную формулу, но разную пространственную конфигурацию. Пример: Глюкоза имеет два изомера по отношению к предпоследнему атому углерода. Это D-глюкоза и L-глюкоза.
      • Оптическая активность — Это вращение плоско-поляризованного света, образующего (+) глюкозу и (-) глюкозу.
      • Диастереоизомеры — Конфигурационные изменения в отношении C2, C3 или C4 в глюкозе. Пример: манноза, галактоза.
      • Анномерия — Это пространственная конфигурация относительно первого атома углерода в альдозах и второго атома углерода в кетозах.

      Химические свойства углеводов

      • Образование осазона : Осазон является производным углеводов, когда сахара вступают в реакцию с избытком фенилгидразина.например. Глюкозазон
      • Тест Бенедикта: Восстанавливающие сахара при нагревании в присутствии щелочи превращаются в мощные восстанавливающие соединения, известные как эндиолы. Когда раствор реагента Бенедикта и редуцирующие сахара нагревают вместе, раствор меняет свой цвет на оранжево-красный / кирпично-красный.
      • Окисление: Моносахариды представляют собой восстанавливающие сахара, если их карбонильные группы окисляются с образованием карбоновых кислот. В тесте Бенедикта D-глюкоза окисляется до D-глюконовой кислоты, поэтому глюкоза считается редуцирующим сахаром.
      • Восстановление до спиртов: Группы C = O в формах углеводов с открытой цепью могут быть восстановлены до спиртов с помощью боргидрида натрия, NaBH 4 или каталитического гидрирования (h3, Ni, EtOH / h3O). Эти продукты известны как «альдиты».

      Свойства моносахаридов

      • Большинство моносахаридов имеют сладкий вкус (фруктоза самая сладкая; на 73% слаще сахарозы).
      • При комнатной температуре они представляют собой твердые вещества.
      • Они чрезвычайно растворимы в воде: — Несмотря на их высокую молекулярную массу, присутствие большого количества групп ОН делает моносахариды гораздо более растворимыми в воде, чем большинство молекул с аналогичной молекулярной массой.
      • Глюкоза может растворяться в незначительном количестве воды, чтобы получился сироп (1 г / 1 мл ч3O).

      Классификация углеводов (типы углеводов)

      Простые углеводы включают отдельные сахара (моносахариды) и полимеры, олигосахариды и полисахариды.

      Моносахариды

      • Простейшая группа углеводов, часто называемая простыми сахарами, поскольку они не могут подвергаться дальнейшему гидролизу.
      • Бесцветное кристаллическое твердое вещество, растворимое в воде и нерастворимое в неполярном растворителе.
      • Это соединения, содержащие свободную альдегидную или кетонную группу.
      • Общая формула: C n (h3O) n или C n H 2n O n .
      • Они классифицируются по количеству содержащихся в них атомов углерода, а также по присутствующей функциональной группе.
      • Моносахариды с 3,4,5,6,7… атомами углерода называются триозами, тетрозами, пентозами, гексозами, гептозами и т. Д., а также в виде альдоз или кетоз в зависимости от того, содержат ли они альдегидную или кетоновую группу.
      • Примеры: Глюкоза, фруктоза, эритрулоза, рибулоза.

      Олигосахариды

      • Олигосахариды — это сложные сахара, которые при гидролизе дают от 2 до 10 молекул одного и того же или разных моносахаридов.
      • Моносахаридные звенья соединены гликозидной связью.
      • По количеству моносахаридных звеньев он дополнительно классифицируется как дисахарид, трисахарид, тетрасахарид и т. Д.
      • Олигосахариды, дающие 2 молекулы моносахаридов при гидролизе, известны как дисахариды, а олигосахариды, дающие 3 или 4 моносахарида, известны как трисахариды и тетрасахариды соответственно и так далее.
      • Общая формула дисахаридов — C n (h3O) n-1 , а трисахаридов — C n (h3O) n-2 и так далее.
      • Примеры: Дисахариды включают сахарозу, лактозу, мальтозу и т. Д.
      • Трисахариды — это рафиноза, рабиноза.

      Полисахариды

      • Их еще называют «гликаны».
      • Полисахариды содержат более 10 моносахаридных единиц и могут составлять сотни единиц сахара в длину.
      • При гидролизе они дают более 10 молекул моносахаридов.
      • Полисахариды отличаются друг от друга идентичностью повторяющихся моносахаридных единиц, длиной их цепей, типами связывающих звеньев и степенью разветвления.
      • Они в первую очередь связаны с двумя важными функциями, т.е. Структурные функции и хранение энергии.
      • Далее они классифицируются в зависимости от типа молекул, образующихся в результате гидролиза.
      • Это могут быть гомополисахаридов e, содержащие моносахариды одного типа, или гетерополисахариды , то есть моносахариды разных типов.
      • Примерами гомополисахаридов являются крахмал, гликоген, целлюлоза, пектин.
      • Гетерополисахариды — Гиалуроновая кислота, Хондроитин.

      Функции

      Углеводы — это молекулы, широко распространенные в тканях растений и животных. У растений и членистоногих углеводы из структур скелета также служат запасами пищи для растений и животных. Они являются важным источником энергии, необходимой для различных метаболических процессов, энергия получается путем окисления.

      Некоторые из их основных функций включают:

      • Живые организмы используют углеводы в качестве доступной энергии для подпитки клеточных реакций.Они являются наиболее богатым пищевым источником энергии (4 ккал / грамм) для всех живых существ.
      • Углеводы, являясь основным источником энергии для многих животных, являются мгновенными источниками энергии. Глюкоза расщепляется гликолизом / циклом Креба с образованием АТФ.
      • Служат накопителями энергии, топливом и промежуточными продуктами метаболизма. Он хранится в виде гликогена у животных и крахмала в растениях.
      • Накопленные углеводы действуют как источник энергии вместо белков.
      • Они образуют структурные и защитные компоненты, как в клеточной стенке растений и микроорганизмов.Структурные элементы в клеточных стенках бактерий (пептидогликан или муреин), растений (целлюлоза) и животных (хитин).
      • Углеводы — это промежуточные продукты в биосинтезе жиров и белков.
      • Углеводы регулируют работу нервной ткани и являются источником энергии для мозга.
      • Углеводы связываются с липидами и белками с образованием поверхностных антигенов, рецепторных молекул, витаминов и антибиотиков.
      • Формирование структурного каркаса РНК и ДНК (рибонуклеиновая кислота и дезоксирибонуклеиновая кислота).
      • Они связаны со многими белками и липидами. Такие связанные углеводы важны для межклеточной коммуникации и взаимодействия между клетками и другими элементами клеточной среды.
      • У животных они являются важным компонентом соединительной ткани.
      • Углеводы с высоким содержанием клетчатки помогают предотвратить запоры.
      • Кроме того, они помогают в модуляции иммунной системы.

      Ссылки

      1. Ленингер, А.Л., Нельсон Д. Л. и Кокс М. М. (2000). Принципы биохимии Ленингера. Нью-Йорк: Издательство Worth.
      2. Мэдиган, М. Т., Мартинко, Дж. М., Бендер, К. С., Бакли, Д. Х., и Шталь, Д. А. (2015). Биология Брока микроорганизмов (четырнадцатое издание). Бостон: Пирсон.
      3. Родуэлл, В. В., Ботам, К. М., Кеннелли, П. Дж., Вейл, П. А., и Бендер, Д. А. (2015). Иллюстрированная биохимия Харпера (30-е изд.). Нью-Йорк, Нью-Йорк: McGraw-Hill Education LLC.
      4. https: // биология.tutorvista.com/biomolecules/carbohydrates.html

      Углеводы — определение, структура, виды, примеры, функции

      Какова функция углеводов? Факты и многое другое

      Углеводы дают людям энергию и являются жизненно важной частью здорового питания.

      Однако употребление в пищу слишком большого количества углеводов или выбор неправильного типа может привести к увеличению веса или другим проблемам со здоровьем.

      В этой статье мы рассмотрим функцию углеводов, а также их происхождение, как организм их перерабатывает и какие из них выбрать.

      Углеводы дают человеку энергию. Люди также могут получать энергию из продуктов, содержащих белок и жиры, но углеводы являются предпочтительным источником для организма.

      Если у человека недостаточно углеводов, его организм будет использовать белки и жиры в качестве источника энергии.

      Однако, поскольку белок жизненно важен для многих других важных функций, таких как строительство и восстановление тканей, организм предпочитает не использовать его для получения энергии.

      Углеводы в организме расщепляются на глюкозу.Глюкоза перемещается из кровотока в клетки организма с помощью гормона инсулина. Все клетки в организме человека используют глюкозу для своего функционирования.

      Мозг использует 20-25% глюкозы человека, когда он находится в состоянии покоя и зависит от постоянного снабжения.

      Откуда берутся углеводы?

      Люди получают углеводы из пищи. Все растения содержат углеводы, которые обычно составляют значительную часть рациона человека.

      Углеводы содержат молекулы сахара, называемые сахаридами.Эти молекулы содержат углерод, водород и кислород.

      Ученые классифицируют углеводы как простые или сложные, в зависимости от того, сколько молекул сахара они содержат.

      Простые углеводы

      Простые углеводы содержат одну или две молекулы сахара и включают глюкозу, фруктозу, сахарозу и лактозу.

      Простые углеводы встречаются в природе:

      • фрукты
      • фруктовые соки
      • молоко
      • молочные продукты

      Сложные углеводы

      Сложные углеводы содержат более длинные и сложные цепи сахаров.В их состав входят олигосахариды и полисахариды. Сложные углеводы также содержат клетчатку и крахмал.

      Примеры сложных углеводов:

      • цельнозерновые, в том числе некоторые виды хлеба, крупы, макаронные изделия и рис
      • горох и бобы
      • овощи и фрукты

      Рафинированные углеводы

      Рафинированные углеводы — это продукты, которые исчезли путем обработки, при которой удаляются некоторые из их ингредиентов, такие как клетчатка и минералы.

      Эти углеводы включают подсластители и кукурузный сироп с высоким содержанием фруктозы, которые производители часто добавляют в обработанные пищевые продукты.

      Примеры рафинированных углеводов:

      • белый хлеб, макароны и рис
      • обработанные сухие завтраки
      • торты, сладости и выпечка
      • подсластители и кукурузный сироп с высоким содержанием фруктозы

      Организм расщепляет углеводы до глюкозы использовать их как:

      • постоянный источник энергии для функций организма
      • быстрый и мгновенный источник энергии при тренировке
      • резерв энергии, который организм накапливает в мышцах или печени и высвобождает при необходимости

      Если организм уже накапливает достаточно энергии и не требует большего, он превращает глюкозу в жир, что может привести к увеличению веса.

      Глюкоза не может оставаться в кровотоке, так как она может быть опасной и токсичной. После еды поджелудочная железа выделяет инсулин, который помогает переместить глюкозу в клетки организма, которые могут использовать или хранить ее.

      Инсулин отвечает за предотвращение слишком высокого уровня сахара в крови.

      Диета, содержащая много сладких продуктов и углеводов, может слишком сильно зависеть от инсулиновой реакции, что может привести к таким проблемам со здоровьем, как диабет или ожирение.

      Для получения дополнительных научно обоснованных ресурсов по питанию посетите наш специализированный центр.

      Когда человек ест больше углеводов, чем ему нужно, он может хранить избыток глюкозы в виде жира. Если кто-то очень активен или много тренируется, он может относительно быстро израсходовать эти углеводы.

      Однако люди, которые не употребляют эти углеводы, могут обнаружить, что они прибавили в весе.

      Сложные углеводы, такие как коричневый рис, цельнозерновой хлеб и овощи, медленнее выделяют энергию и дольше сохраняют чувство сытости.

      Выбор сложных углеводов и крахмалистых овощей может быть более полезным для человека способом включить этот жизненно важный макроэлемент в свой рацион.

      К более полезным крахмалистым овощам относятся:

      Бобовые, такие как фасоль и горох, также содержат сложные углеводы и могут быть отличным продуктом питательной диеты.

      Зерновые составляют значительную часть рациона многих людей. Рекомендации по питанию для американцев на 2015–2020 годы рекомендуют потреблять в день эквивалент 6 унций зерна при диете в 2000 калорий.

      По крайней мере половину этого количества должны составлять цельнозерновые, а не очищенные или переработанные зерна.

      Для людей хороший способ добиться этого — либо искать продукты из 100% цельного зерна, либо выбирать продукты, содержащие не менее 50% цельного зерна.

      Простые и рафинированные углеводы, такие как сладкие закуски и напитки, белый хлеб и макароны, белый картофель, могут иметь негативные последствия, если человек ест их слишком много.

      Организм очень быстро усваивает сахар из этих продуктов, что может дать им быстрый прилив энергии, но не сохраняет их надолго.Этот эффект может привести к перееданию.

      Здоровые заменители

      Чтобы поддерживать здоровую диету, человек может попробовать следующие заменители:

      • Заменить белую пасту или рис цельнозерновыми
      • Заменить бутерброд с белым хлебом салатом из киноа или запеченным сладким картофелем и добавить овощи к еде
      • вместо того, чтобы есть обработанные хлопья для завтрака, замочите цельнозерновой овес в кокосовом молоке и корице на ночь и добавьте чернику
      • замените кусок пиццы на полезный и сытный суп, содержащий овощи и чечевицу или бобы

      Углеводы необходимы для обеспечения организма энергией и поддержки его оптимального функционирования. У людей могут быть разные потребности в углеводах в зависимости от их образа жизни, веса и уровня активности.

      Большинство людей могут обеспечить здоровую диету, включив сложные углеводы и ограничив потребление рафинированных углеводов.

      Внимательное отношение к выбору углеводов может помочь человеку добиться хорошего баланса глюкозы в крови и ограничить риск сопутствующих заболеваний.

      Примеры углеводов

      Углеводы — это органические соединения, которые в живых тканях и продуктах питания принимают формы сахаров, крахмалов и волокон.Энергия, создаваемая при расщеплении углеводов (также известных как «углеводы») во время пищеварения, становится энергией, которую ваше тело может использовать. Однако некоторые виды углеводов действуют, обеспечивая ограниченное количество энергии, в то время как другие углеводы сохраняют энергию в течение более длительного периода времени. Продолжайте читать, чтобы узнать об углеводах и о том, где вы можете найти их в своем ежедневном рационе.

      Простые углеводы

      Лучший способ определить углеводы — это то, что это нити сахаров, которые организм расщепляет для создания энергии.Простые углеводы — это короткие цепи, а сложные углеводы — длинные. Простые углеводы быстро расщепляются организмом, что делает их хорошими источниками быстрой энергии, но плохими источниками долгосрочной энергии.

      Примеры простых углеводов

      Два типа простых углеводов — это моносахаридов (состоящих из одного сахара) и дисахаридов (состоящих из двух сахаров). Они являются строительными блоками для сложных углеводов.

      Примеры моносахаридных углеводов, и где они встречаются:

      • арабиноза — кофе, вино, овощи
      • аллюлоза — изюм, инжир, сухофрукты
      • фруктоза — фрукты, мед, сироп агавы
      • галактоза — масло, сливки, топленое масло
      • глюкозамин — моллюски, хрящи животных
      • глюкоза — патока, сладкая кукуруза, фруктовые соки
      • манноза — клюква, брокколи, стручковая фасоль
      • N-ацетилгалактозамин — арбуз, шелковица, цейлонская корица
      • рибоза — яйца, говядина, птица
      • рамноза — апельсины, морковь, капуста
      • ксилоза — картофель, хлеб, горох

      Примеры дисахаридов:

      • целлобиоза — мед, хвоя, кукуруза
      • изомальтоза — полуфабрикаты, приправы, заменители сахара
      • лактоза — молоко, йогурт, мороженое
      • мальтоза — хлеб, крупы, персики
      • рутиноза — сливы, вишня, грейпфрут
      • рутинулоза — чечевица, цельнозерновые, коричневый рис
      • сахароза — кленовый сироп, сахарный тростник, конфеты
      • трегалоза — семена подсолнечника, грибы, дрожжи

      Эти сахара являются частью здорового питания. Однако когда простые углеводы перерабатываются в высококонцентрированные формы, такие как кукурузный сироп с высоким содержанием фруктозы (содержится в газированных напитках, фруктовых закусках и конфетах), они могут привести к нездоровым привычкам в еде и питанию.

      Сложные углеводы

      Сложные углеводы состоят из нескольких простых сахаров. Они состоят из олигосахаридов (которые содержат от трех до десяти сахаров) и полисахаридов (которые содержат больше сахаров, чем олигосахариды). В то время как простые углеводы — это в основном виды сахаров, сложные углеводы включают крахмалы и волокна, которые медленнее перевариваются и более питательны.

      Примеры сложных углеводов

      В продуктах, которые вы едите каждый день, вы найдете сложные углеводы, известные как крахмалы и клетчатка. Крахмал богат витаминами и минералами и часто добавляется в другие продукты в качестве загустителей. Клетчатка не усваивается организмом, но помогает в процессе пищеварения и может снизить уровень холестерина. Сложные углеводы обычно находятся в стенках растительных клеток.

      Примеры олигосахаридов углеводов включают:

      • декстрин — пшеница, кукуруза, картофель
      • фруктоолигосахариды (FOS) — лук, артишоки, цикорий
      • галактоолигосахариды (GOS) — бобы гарбанзо, кешью, соя — корнеплоды генозы
      • 9000 9000 специи

      • изомальтоолигосахарид (IMO) — соевый соус, хлеб на закваске, кимчи
      • мальтотриоза — грибы шиитаке, китайская корица, выпечка
      • маннановые олигосахариды (MOS) — пробу кофе
      • рафиноза — брюссельская капуста, капуста, цельные зерна
      • ксилобиоза — миндаль, отруби, бамбук

      Полисахаридные углеводы включают:

      • амилопектин — длиннозерный рис, картофель, кукуруза
      • амилоза — ячмень, пшеница, картофель
      • арабиноксилан — рожь, овес, льняное семя
      • бета-глюкан — овес, морские водоросли, ячменное волокно
      • каррагинан — творог, миндальное молоко, кокосовое молоко
      • целлюлоза — корни, кожура яблока, отруби
      • хитин — лобстер, креветки, насекомые
      • фруктан — пшеница, лук, полба
      • гликоген — макароны, киноа, бобовые
      • гемицеллюлоза — стручковая фасоль, пшеница
      • инулин — чеснок, спаржа, бананы
      • нигероза — рис, рисовое вино
      • пектин — клубника, гуава, цитрусовые
      • псиллиум — семена, шелуха растений
      • ксантановая камедь — супы, сиропы, соусы

      Крахмалы входят в состав неотъемлемой части здорового питания наряду с продуктами с высоким содержанием клетчатки. Если вы включите несколько продуктов из каждого из этих списков в свой ежедневный прием пищи, вы положительно повлияете на свое питание и здоровье пищеварительной системы.

      Как сбалансировать здоровый образ жизни с углеводами

      Знание типа углеводов в продуктах, которые вы едите, может улучшить ваш энергетический уровень и улучшить питание. Как и все аспекты вашего здоровья, баланс является ключевым моментом — вам нужны как простые, так и сложные углеводы в вашем рационе, чтобы поддерживать этот баланс. Узнайте больше о том, что нужно вашему организму, с помощью этих примеров мононенасыщенных жиров и их потенциальных преимуществ.Составив план питания, ознакомьтесь с 15 примерами личных целей в отношении здоровья, которых вы можете достичь.

      Функции углеводов в организме — питание человека [УСТАРЕЛО]

      В организме человека есть пять основных функций углеводов. Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют метаболизму липидов.

      Производство энергии

      Основная роль углеводов — снабжать энергией все клетки тела.Многие клетки предпочитают глюкозу в качестве источника энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низким уровням глюкозы в крови, потому что он использует только глюкозу для выработки энергии и функционирования (если только он не находится в условиях крайнего голодания). Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями. Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах.Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания. Клеточное дыхание — это в основном контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных стадиях, чтобы замедлить высвобождение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

      Первая стадия распада глюкозы называется гликолизом. Гликолиз или расщепление глюкозы происходит в запутанной серии из десяти стадий ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями. Один атом углерода и два атома кислорода удаляются, что дает больше энергии. Энергия этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

      Рисунок 4.10 Клеточное дыхание

      Клеточное дыхание — это процесс извлечения энергии из глюкозы.

      Накопитель энергии

      Если у тела уже достаточно энергии для поддержания своих функций, избыток глюкозы хранится в виде гликогена (большая часть которого хранится в мышцах и печени). Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что обеспечивает быстрое распространение глюкозы, когда она необходима для выработки клеточной энергии.

      Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий — 3000 в мышечной ткани и 1000 в печени. Продолжительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Помните, что это называется «ударом о стену» или «ударом о стену» и характеризуется утомляемостью и снижением производительности при выполнении упражнений. Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы. После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут незначительно увеличить свой запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований. Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровый забег ради развлечения, не нужно есть большую тарелку макарон перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

      Печень, как и мышца, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленной энергией глюкозы другим тканям организма, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности. Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи.Когда запасы гликогена в печени истощаются, глюкоза образуется из аминокислот, полученных в результате разрушения белков, чтобы поддерживать метаболический гомеостаз.

      Строительные макромолекулы

      Хотя большая часть поглощаемой глюкозы используется для производства энергии, некоторая часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ. Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме.Если вся энергия, способность накапливать гликоген и потребности организма в наращивании удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с слишком высоким содержанием углеводов и калорий может прибавить лишнего веса — тема, которая будет обсуждаться в ближайшее время.

      Рисунок 4.11 Химическая структура дезоксирибозы

      Дезоксирибоза из молекулы сахара используется для построения основы ДНК. Изображение rozeta / CC BY-SA 3.0

      Рис. 4.12 Двухцепочечная ДНК

      Изображение Forluvoft / Public Domain

      В ситуации, когда недостаточно глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот.Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие достаточного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

      По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется. Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии.Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз — это нарушение обмена веществ, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела — это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания. Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникать у алкоголиков, людей с недостаточным питанием и у людей с диабетом 1 типа.Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

      Углеводы имеют решающее значение для поддержки самой основной функции жизни — производства энергии. Без энергии не происходит ни один из других жизненных процессов. Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, поскольку их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *