Разное

Значение в клетке углеводов в: Недопустимое название — Викиучебник

Содержание

9. Углеводы и их роль в жизнедеятельности клетки

Параграф 9

Модуль 9

Углеводы и их роль в жизнедеятельности клетки

Блок 1

1.      
Какое определение можно дать углеводам?

2.      
На какие три основных класса углеводы можно
поделить?

3.      
Какая функция углеводов в организме является
основной и почему?

4.      
Каким образом углеводы могут выполнять защитную
функцию у растений?

5.      
Каким образом углеводы могут выполнять защитную
функцию у животных?

Блок 2

1.      
Чем отличаются и похожи между собой разные
классы углеводов по растворимости в воде?

2.      
Какие моносахариды имеют наибольшее значение для
живых организмов?

3.      
Чем по строению отличаются олигосахариды от
моносахаридов?

4.      
Как углеводы выполняют запасающую функцию у
растений?

5.      
В каких случаях углеводы могут откладываться в
запас, и когда они чаще всего используются организмом? Приведите примеры.

Блок 3

1.      
Что это за углевод рибоза и каково его значение?

2.      
Чем отличаются и похожи между собой разные
классы углеводов по наличию вкуса?

3.      
Приведите примеры наиболее важных
олигосахаридов?

4.      
Что такое гликопротеиды и гликолипиды?

5.      
Как углеводы выполняют запасающую функцию у
животных?

Блок 4

1.      
Какое определение можно дать полисахаридам?

2.      
Какие из полисахарида являются наиболее важными
для живых организмов?

3.      
Как углеводы могут выполнять строительную
функцию?

4.      
Какое практическое значение имеют углеводы для
человека?

5.      
Чем отличаются и похожи крахмал и гликоген?

Итоговые задания

№ 1

Перечислите все важные функции
углеводов и кратко охарактеризуйте их?

№ 2 (заполните пропуски)

Углеводы – это органические
вещества, состоящие из трёх химических элементов: 
1)…, 2) … и 3) … , причём соотношение атомов 4) … и 5) … как в молекуле
6) … Углеводы делятся на три класса 7) …, 8) …, 9) …

№ 3 (исправьте предложения)

1.       
К моносахаридам относятся рибоза, дезоксирибоза,
мальтоза и лактоза.

2.      
К олигосахаридам относятся глюкоза, фруктоза,
галактоза и сахароза.

3.      
К полисахаридам относятся крахмал, гликоген,
гликопротеиды и гликолипиды.

4.      
Углеводы могут выполнять энергетическую и
регуляторную функции в организме.

5.      
Наиболее важным запасающим углеводом у животных
организмов является крахмал.

 

Материалы для организации дистанционного обучения. «Биология» (10–11 классы)

























































Класс

Название урока

Ссылка на учебные материалы

10

Биология как комплексная наука

https://resh. edu.ru/subject/lesson/3827/main/118944/

10

Биологические системы как предмет изучения биологии

https://infourok.ru/videouroki/12

10

Молекулярные основы жизни. Неорганические вещества, их значение

https://resh.edu.ru/subject/lesson/5397/start/270098/

10

Органические вещества (углеводы, липиды) и их значение. Биополимеры

https://infourok.ru/videouroki/31

https://infourok.ru/videouroki/32

10

Органические вещества. Белки. Значение белков

https://resh.edu.ru/subject/lesson/3840/main/163100/

10

Органические вещества клетки – нуклеиновые кислоты и их значение. АТФ

https://resh.edu.ru/subject/lesson/3840/main/163100/

10

Цитология, методы цитологии. Клетка – структурная и функциональная единица организма. Роль клеточной теории в становлении современной естественно-научной картины мира

https://resh.edu.ru/subject/lesson/5383/start/153371/

10

Клетки прокариот и эукариот. Основные части и органоиды клетки, их строение и функции. Строение и функции хромосом

https://resh.edu.ru/subject/lesson/5383/start/153371/

https://resh.edu.ru/subject/lesson/3847/start/8616/

10

Сравнение строения клеток растений, животных, грибов и бактерий

https://infourok.ru/videouroki/5

10

Вирусы – неклеточная форма жизни, меры профилактики вирусных заболеваний

https://resh.edu.ru/subject/lesson/3939/main/105169/

10

Жизнедеятельность клетки. Пластический обмен. Фотосинтез, хемосинтез

https://resh.edu.ru/subject/lesson/3917/main/46781/

10

Энергетический обмен

https://resh. edu.ru/subject/lesson/3917/main/46781/

10

Хранение, передача и реализация наследственной информации в клетке. Ген. Геном

https://resh.edu.ru/subject/lesson/5352/main/8295/

https://resh.edu.ru/subject/lesson/3939/main/105169/

10

Биосинтез белка

https://resh.edu.ru/subject/lesson/5352/main/8295/

10

Клеточный цикл: интерфаза и деление. Митоз, значение

https://resh.edu.ru/subject/lesson/3927/main/105899/

10

Мейоз. Значение мейоза

https://resh.edu.ru/subject/lesson/3927/main/105899/

10

Организм – единое целое. Жизнедеятельность организма

10

Размножение организмов

https://resh.edu.ru/subject/lesson/5359/main/271003/

10

Организм. Индивидуальное развитие организмов

https://resh.edu.ru/subject/lesson/5630/main/132924/

https://resh.edu.ru/subject/lesson/5385/main/119868/

10

Генетика. Методы генетики. Генетическая терминология и символика

https://resh.edu.ru/subject/lesson/5386/main/74574/

10

Законы наследственности

https://resh.edu.ru/subject/lesson/5386/main/74574/

https://resh.edu.ru/subject/lesson/4725/main/107951/

10

Хромосомная теория наследственности

https://resh.edu.ru/subject/lesson/4755/main/118832/

10

Определение пола. Сцепленное с полом наследование

https://resh.edu.ru/subject/lesson/4755/main/118832/

10

Генетика человека. Методы изучения генетики человека. Наследственные заболевания человека и их профилактика

https://resh.edu.ru/subject/lesson/3653/main/47183/

https://infourok.ru/videouroki/28

10

Генотип и среда. Ненаследственная изменчивость

https://resh.edu.ru/subject/lesson/5387/main/17439/

https://resh.edu.ru/subject/lesson/5387/main/17439/

10

Наследственная изменчивость. Мутации

https://resh.edu.ru/subject/lesson/5387/main/17439/

10

Основы селекции. Методы селекции. Биотехнология, её направления и перспективы развития

https://resh. edu.ru/subject/lesson/3861/main/106016/

11

Развитие эволюционных идей

https://resh.edu.ru/subject/lesson/5393/main/132001/

11

Эволюционная теория Ч. Дарвина. Синтетическая теория эволюции

https://infourok.ru/videouroki/35

11

Свидетельства эволюции живой природы

https://resh.edu.ru/subject/lesson/5391/main/119918/

11

Вид. Критерии вида

https://resh.edu. ru/subject/lesson/4949/main/119947/

11

Микроэволюция. Видообразование. Популяция – элементарная единица эволюции

https://resh.edu.ru/subject/lesson/4949/main/119947/

11

Факторы (движущие силы) эволюции

https://resh.edu.ru/subject/lesson/5388/main/17613/

11

Естественный отбор и его результаты

https://resh.edu.ru/subject/lesson/5388/main/17613/

11

Направления эволюции

https://resh. edu.ru/subject/lesson/4950/main/47358/

11

Многообразие организмов как результат эволюции. Приспособленность

https://resh.edu.ru/subject/lesson/5390/main/17698/

11

Принципы классификации. Систематика

https://resh.edu.ru/subject/lesson/5395/start/107347/

11

Гипотезы происхождения жизни на Земле

https://resh.edu.ru/subject/lesson/4950/main/47358/

11

Основные этапы эволюции органического мира на Земле

https://resh. edu.ru/subject/lesson/3885/main/270131/

11

Основные этапы развития жизни на Земле (архей, протерозой)

https://interneturok.ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/istoriya-razvitiya-zhizni-v-arheyskuyu-i-proterozoyskuyu-eru

11

Основные этапы развития жизни на Земле (ранний палеозой)

https://interneturok.ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/istoriya-razvitiya-zhizni-v-paleozoyskuyu-eru-ch-1

11

Основные этапы развития жизни на Земле (поздний палеозой)

https://interneturok. ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/istoriya-razvitiya-zhizni-v-paleozoyskuyu-eru-ch-2

11

Основные этапы развития жизни на Земле (мезозой и кайнозой)

https://interneturok.ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/istoriya-razvitiya-zhizni-v-mezozoyskuyu-eru-ch-1

https://interneturok.ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/istoriya-razvitiya-zhizni-v-mezozoyskuyu-eru-ch-2

https://interneturok.ru/lesson/biology/11-klass/bistoriya-razvitiya-zhizni-na-zemleb/razvitie-zhizni-v-kaynozoyskuyu-eru

11

Современные представления о происхождении человека. Эволюция человека (антропогенез). Движущие силы антропогенеза

https://resh. edu.ru/subject/lesson/4951/main/107500/

11

Движущие силы антропогенеза. Расы человека, их происхождение и единство. Человек – биосоциальное существо

https://resh.edu.ru/subject/lesson/3906/main/161179/

11

Приспособление организмов к действию экологических факторов

https://resh.edu.ru/subject/lesson/5392/main/

11

Биогеоценоз. Экосистема

https://resh.edu.ru/subject/lesson/5501/main/119079/

11

Свойства и разнообразие экосистем

https://resh. edu.ru/subject/lesson/4953/main/105426/

11

Разнообразие экосистем

https://interneturok.ru/lesson/biology/11-klass/osnovy-ekologii/vzaimodeystvie-organizma-i-sredy-ekosistemy-biogeotsenozy

11

Взаимоотношения популяций разных видов в экосистеме

https://infourok.ru/videouroki/49

11

Круговорот веществ в экосистеме

https://infourok.ru/videouroki/53

11

Устойчивость и динамика экосистем

https://infourok. ru/videouroki/54

11

Последствия влияния деятельности человека на экосистемы. Сохранение биоразнообразия как основа устойчивости экосистемы

https://interneturok.ru/lesson/biology/11-klass/vzaimodeystvie-cheloveka-i-prirody/vozdeystvie-cheloveka-na-prirodu-v-protsesse-stanovleniya-obschestva

11

Структура биосферы. Закономерности существования биосферы

https://resh.edu.ru/subject/lesson/5394/main/119108/

https://infourok.ru/videouroki/61

11

Роль человека в биосфере. Глобальные антропогенные изменения в биосфере. Проблемы устойчивого развития

https://resh. edu.ru/subject/lesson/5499/main/132030/

Углеводы и их роль в жизнедеятельности клетки — Углеводы и их роль в жизнедеятельности клетки

Комментарии преподавателя

  Все ве­ще­ства, вхо­дя­щие в со­став ор­га­низ­ма, де­лят­ся на два клас­са: ор­га­ни­че­ские и неор­га­ни­че­ские со­еди­не­ния  

.

К неор­га­ни­че­ским со­еди­не­ни­ям от­но­сят­ся вода и ми­не­раль­ные ве­ще­ства.

К ор­га­ни­че­ским со­еди­не­ни­ям от­но­сят­ся:

— малые ор­га­ни­че­ские со­еди­не­ния (мо­но­ме­ры), мо­ле­ку­ляр­ная масса ко­то­рых ко­леб­лет­ся от 100 до 350. На­при­мер: мо­но­са­ха­ри­ды, жир­ные кис­ло­ты, нук­лео­ти­ды. Малые ор­га­ни­че­ские мо­ле­ку­лы при­сут­ству­ют в клет­ке как в сво­бод­ном виде, так и в свя­зан­ном виде, то есть вхо­дят в со­став био­по­ли­ме­ров.

— боль­шие ор­га­ни­че­ские мо­ле­ку­лы (био­по­ли­ме­ры), мо­ле­ку­ляр­ная масса ко­то­рых ко­леб­лет­ся от  до . Это белки, по­ли­са­ха­ри­ды, нук­ле­и­но­вые кис­ло­ты, ли­пи­ды.

Уг­ле­во­ды – важ­ный класс ор­га­ни­че­ских со­еди­не­ний, ко­то­рый встре­ча­ет­ся по­все­мест­но: в рас­ти­тель­ных ор­га­низ­мах, жи­вот­ных ор­га­низ­мах и мик­ро­ор­га­низ­мах. В рас­ти­тель­ных ор­га­низ­мах на долю уг­ле­во­дов при­хо­дит­ся 80-90 %, в жи­вот­ных ор­га­низ­мах – 1-5 %, в мик­ро­ор­га­низ­мах – 12-30 %.

mypresentation.ru

Раз­ли­ча­ют три ос­нов­ных клас­са уг­ле­во­дов: мо­но­са­ха­ри­ды, оли­гос­а­ха­ри­ды и по­ли­са­ха­ри­ды

Бес­цвет­ные, кри­стал­ли­че­ские ве­ще­ства, легко рас­тво­ри­мые в воде и име­ю­щие слад­кий вкус.

Из мо­но­са­ха­ри­дов наи­боль­шее зна­че­ние для живых ор­га­низ­мов имеют:

1. Ри­бо­за . Вхо­дит в со­став нук­ле­и­но­вых кис­лот РНК, АТФ. 

derzhim-formu.mirtese

2. Дез­ок­си­ри­бо­за. Вхо­дит в со­став ДНК. 

uslide.ru

3. Глю­ко­за. Один из наи­бо­лее рас­про­стра­нен­ных при­род­ных са­ха­ров, на­хо­дит­ся как в сво­бод­ном, так и в свя­зан­ном виде. В сво­бод­ном виде быст­ро увле­ка­ет­ся в энер­ге­ти­че­ский ме­та­бо­лизм, то есть слу­жит ос­нов­ным ис­точ­ни­ком энер­гии в клет­ке. Яв­ля­ет­ся мо­но­ме­ром мно­гих оли­гос­а­ха­ри­дов и по­ли­са­ха­ри­дов, на­при­мер крах­ма­ла и трост­ни­ко­во­го са­ха­ра.

 

dreamstime.com

4. Га­лак­то­за. Вхо­дит в со­став мо­лоч­но­го са­ха­ра – лак­то­зы. 

 

5. Фрук­то­за . Вхо­дит в со­став оли­гос­а­ха­ри­дов, на­при­мер са­ха­ро­зы. В сво­бод­ном виде со­дер­жит­ся в клет­ках рас­те­ний. 

Са­ха­ро­по­доб­ные ве­ще­ства, ко­то­рые ха­рак­те­ри­зу­ют­ся срав­ни­тель­но неболь­шой мо­ле­ку­ляр­ной мас­сой, хо­ро­шей рас­тво­ри­мо­стью в воде, лег­кой кри­стал­ли­за­ци­ей, слад­ким вку­сом. Ко­ли­че­ство струк­тур­ных еди­ниц, ко­то­рые вхо­дят в со­став оли­гос­а­ха­ри­дов, – от двух до де­ся­ти.

Из оли­гос­а­ха­ри­дов наи­бо­лее ши­ро­ко рас­про­стра­не­ны ди­са­ха­ри­ды:

1. Са­ха­ро­за (трост­ни­ко­вый сахар) – сахар, ко­то­рый люди упо­треб­ля­ют в по­все­днев­ной жизни . Са­ха­ро­за со­дер­жит­ся в боль­шин­стве рас­те­ний, но осо­бен­но много ее в са­хар­ном трост­ни­ке и са­хар­ной свек­ле. 

sofia-soft.ga

2. Лак­то­за (мо­лоч­ный сахар). Со­дер­жит­ся в мо­ло­ке и мо­лоч­ных про­дук­тах.

zhelezniy-blog.ru

3. Маль­то­за (со­ло­до­вый сахар). В боль­шом ко­ли­че­стве со­дер­жит­ся в про­рос­ших или про­рас­та­ю­щих зер­нах яч­ме­ня, ржи и пше­ни­цы. 

youtube.com

Яв­ля­ют­ся вы­со­ко­мо­ле­ку­ляр­ны­ми ве­ще­ства­ми, со­сто­я­щи­ми из остат­ков мо­но­са­ха­ров со сте­пе­нью по­ли­ме­ри­за­ции выше 10. То есть ко­ли­че­ство мо­но­са­ха­рид­ных зве­ньев может со­став­лять до несколь­ких сотен или тысяч.

Из по­ли­са­ха­ри­дов наи­боль­шее зна­че­ние для живых ор­га­низ­мов имеют крах­мал, гли­ко­ген, цел­лю­ло­за, хитин. Эти по­ли­са­ха­ри­ды не слад­кие, не рас­тво­ри­мы или плохо рас­тво­ри­мы в воде, не кри­стал­ли­зу­ют­ся. Они иг­ра­ют роль ре­зер­ва пищи и энер­гии (крах­мал и гли­ко­ген), ис­поль­зу­ют­ся в ка­че­стве стро­и­тель­но­го ма­те­ри­а­ла (цел­лю­ло­за, хитин).

1. Крах­мал – ос­нов­ной по­ли­са­ха­рид в клет­ках рас­те­ний. Он по­стро­ен из остат­ков глю­ко­зы. Ор­га­низм че­ло­ве­ка хо­ро­шо усва­и­ва­ет крах­мал, в со­ста­ве зер­но­вых и кар­то­фе­ля он по­треб­ля­ет­ся в огром­ных ко­ли­че­ствах. 

youtube.com

2. Гли­ко­ген  – по­ли­са­ха­рид жи­вот­но­го про­ис­хож­де­ния. По­стро­ен из остат­ков глю­ко­зы. Гли­ко­ген у че­ло­ве­ка на­кап­ли­ва­ет­ся в пе­че­ни и мыш­цах. 

sridianti.com

3. Цел­лю­ло­за пред­став­ля­ет собой ли­ней­ный по­ли­са­ха­рид, по­стро­ен­ный из остат­ков глю­ко­зы. Из цел­лю­ло­зы по­стро­е­ны кле­точ­ные стен­ки рас­те­ний, и она вы­пол­ня­ет струк­тур­ную функ­цию.  

brooklyn.cuny.edu

4. Хитин – это азо­то­со­дер­жа­щий по­ли­са­ха­рид (ами­но­по­ли­са­ха­рид). Хитин яв­ля­ет­ся вто­рым после цел­лю­ло­зы по рас­про­стра­нен­но­сти струк­тур­ным по­ли­са­ха­ри­дом. По хи­ми­че­ско­му стро­е­нию, фи­зи­ко-хи­ми­че­ским свой­ствам и вы­пол­ня­е­мым функ­ци­ям хитин бли­зок к цел­лю­ло­зе. Хитин – это ана­лог цел­лю­ло­зы в жи­вот­ном мире. 

bamboocom.com.br

Кле­но­вый сироп – это скон­цен­три­ро­ван­ный сок са­хар­но­го клена. Пред­став­ля­ет собой рас­твор са­ха­ров, в ко­то­ром пре­об­ла­да­ет са­ха­ро­за (65 %), а в неболь­ших ко­ли­че­ствах со­дер­жит­ся глю­ко­за и фрук­то­за. 

Сок со­би­ра­ют из от­вер­стий, про­де­лан­ных в ство­ле де­ре­ва ран­ней вес­ной. Его вы­тес­ня­ет ди­ок­сид уг­ле­ро­да, об­ра­зу­ю­щий­ся в ре­зуль­та­те ряда про­цес­сов ме­та­бо­лиз­ма и вы­де­ля­ю­щий­ся из рас­тво­ра, когда де­ре­во про­гре­ва­ет­ся на ве­сен­нем солн­це. Ко­рич­не­вый цвет кле­но­во­го си­ро­па обу­слав­ли­ва­ет­ся не толь­ко на­ли­чи­ем са­ха­ро­зы, но и на­ли­чи­ем ами­но­кис­лот.

Мно­гие люди, у ко­то­рых по ге­не­ти­че­ским при­чи­нам от­сут­ству­ет фер­мент лак­та­за, не могут усва­и­вать мо­ло­ко, так как они не могут раз­ру­шить лак­то­зу (мо­лоч­ный сахар). В ор­га­низ­ме взрос­ло­го че­ло­ве­ка на­ли­чие этого фер­мен­та – ско­рее ис­клю­че­ние, чем пра­ви­ло. Такой фер­мент ти­пи­чен для жи­те­лей Се­вер­ной Ев­ро­пы, в от­ли­чие от уро­жен­цев Аф­ри­ки и Азии.

При по­па­да­нии лак­то­зы в нераз­ру­шен­ном со­сто­я­нии в тол­стый ки­шеч­ник на нее «на­бра­сы­ва­ют­ся» бак­те­рии, ко­то­рые ис­поль­зу­ют ее в пищу. В ре­зуль­та­те этого в ки­шеч­ни­ке об­ра­зо­вы­ва­ют­ся раз­лич­ные газы, про­ис­хо­дит уве­ли­че­ние дав­ле­ния, и воз­ни­ка­ют ки­шеч­ные рас­строй­ства.

Хотя цел­лю­ло­за, как и крах­мал, яв­ля­ет­ся по­ли­са­ха­ри­дом, че­ло­ве­че­ский ор­га­низм ее усва­и­вать не может, так как в ор­га­низ­ме че­ло­ве­ка от­сут­ству­ет фер­мент цел­лю­ля­за. Этот фер­мент пе­ре­ра­ба­ты­ва­ет цел­лю­ло­зу.

Жвач­ные жи­вот­ные, ко­то­рые по­сто­ян­но ис­поль­зу­ют траву в ка­че­стве пищи, спо­соб­ны пе­ре­ва­ри­вать цел­лю­ло­зу с по­мо­щью раз­лич­ных мик­ро­ор­га­низ­мов, про­жи­ва­ю­щих в же­луд­ке и вы­де­ля­ю­щих цел­лю­ля­зу.

Кро­ли­ки, ко­то­рые пи­та­ют­ся гру­бой рас­ти­тель­ной пищей, изоб­ре­ли спо­соб мно­го­крат­но­го пе­ре­ва­ри­ва­ния цел­лю­ло­зы путем за­гла­ты­ва­ния соб­ствен­ных экс­кре­мен­тов.

Функции углеводов

1. Энер­ге­ти­че­ская

Уг­ле­во­ды обес­пе­чи­ва­ют до 70 % по­треб­но­сти ор­га­низ­ма в энер­гии. При окис­ле­нии 1 г уг­ле­во­дов вы­де­ля­ет­ся 17,6 кДж энер­гии.

2. За­па­са­ю­щая

Крах­мал и гли­ко­ген яв­ля­ют­ся за­пас­ны­ми по­ли­са­ха­ри­да­ми. Они яв­ля­ют­ся вре­мен­ным хра­ни­ли­щем глю­ко­зы.

3. Струк­тур­ная

Цел­лю­ло­за и ряд дру­гих по­ли­са­ха­ри­дов ис­поль­зу­ют­ся в ка­че­стве стро­и­тель­но­го ма­те­ри­а­ла. Цел­лю­ло­за вхо­дит в со­став кле­точ­ных сте­нок рас­те­ний, хитин вхо­дит в со­став кле­точ­ных сте­нок гри­бов, а также ис­поль­зу­ет­ся для по­стро­е­ния на­руж­но­го ске­ле­та у чле­ни­сто­но­гих.

4. За­щит­ная

На­при­мер, ка­ме­ди (смолы, вы­де­ля­ю­щи­е­ся при по­вре­жде­нии ство­лов и веток рас­те­ний), пре­пят­ству­ю­щие про­ник­но­ве­нию в раны бо­лез­не­твор­ных мик­ро­ор­га­низ­мов, яв­ля­ют­ся про­из­вод­ны­ми мо­но­са­ха­ри­дов.

 

источник конспекта — http://interneturok.ru/ru/school/biology/10-klass/bosnovy-citologii-b/uglevody-i-ih-rol-v-zhiznedeyatelnosti-kletki?seconds=0&chapter_id=98

источник видео — http://www.youtube.com/watch?v=BKh2Cp41YG0

источник видео — http://www.youtube.com/watch?v=i4U8N1AdEBY

источник видео — http://www.youtube.com/watch?v=IzqEkFyWfm8

источник видео — http://www.youtube.com/watch?v=WexyHCTywaA

источник презентации — http://www.myshared.ru/slide/download/

Углеводы и их роль в жизнедеятельности клетки




1. Какие вещества, относящиеся к углеводам, вам известны?


Ответ. Углеводы (сахариды) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Углеводы делятся на две группы: простые и сложные. Простые углеводы — глюкоза и фруктоза, дисахарид – сахароза, полисахариды – крахмал и целлюлоза


2. Какую роль играют углеводы в живом организме?


Ответ. Углеводы в живом организме выполняют ряд функций: энергетическую, строительную, защитную, запасающую функции.


Вопросы после §9


1. Какие углеводы называют моно-, олиго– и полисахаридами?


Ответ. Моносахариды (от греч. monos – один) – бесцветные кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов (крахмала, гликогена, целлюлозы). Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений. Галактоза также входит в состав некоторых олигосахаридов, например лактозы.


Олигосахариды (от греч. oligos – немного) образованы двумя (тогда их называют дисахариды) или несколькими моносахаридами, связанными ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус. Из олигосахаридов наиболее широко распространены дисахариды: сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).


Полисахариды (от греч. poly – много) являются полимерами и состоят из неопределённо большого (до нескольких сотен или тысяч) числа остатков молекул моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того, у целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.


2. Какие функции выполняют углеводы в живых организмах?


Ответ. Основная функция углеводов – энергетическая. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г углеводов освобождается 17,6 кДж.


Углеводы выполняют запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.


Очень важной является структурная, или строительная, функция углеводов. Они используются в качестве строительного материала. Так, целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.


Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих.


Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен), препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов.


Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.


3. Почему углеводы считаются главными источниками энергии в клетке?


Ответ. Углеводы считаются главными источниками энергии в клетке потому, что при их расщеплении выделяется достаточно количества энергии. Углеводы доступны организму. Расщепление углеводов происходит быстрее, чем остальных органических веществ.


► Обычно в клетке животных организмов содержится около 1 % углеводов, в клетках печени их содержание доходит до 5 %, а в растительных клетках – до 90 %. Подумайте и объясните почему.


Ответ. В растительных клетках — большой процент углеводов, т. Так как растения автотрофы и в их клетках постоянно идёт процесс фотосинтеза углеводов.


В печени животных более высокое содержание углеводов, т. к. в её клетках находится запас глюкозы в виде гликогена.


► Углеводы являются производными многоатомных спиртов и состоят из углерода, водорода и кислорода. Химики определяют эти соединения как многоатомные оксиальдегиды или многоатомные оксикетоны. Название «углеводы» хотя и является устаревшим, но и по сей день широко используется, в том числе и в научной литературе. Своё название этот класс соединений получил потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в воде. Общая формула углеводов Cn(h30)m, где n не меньше 3. Однако не все соединения, относящиеся к классу углеводов, соответствуют данной формуле.


Выясните, какие это соединения.


Ответ. Общая формула углеводов Сn(h3O)m. Однако с развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной общей формуле,но обладающие свойствами веществ своего класса(например,C5h20O4-Дезоксирибоза). Еще одним примером может служить молочная кислота С3Н6 О3.

Органические вещества: углеводы, белки нуклеиновые кислоты, АТФ, липиды, их элементарное строение, роль в клетке

Предмет: Биология класс: 9

Тема: Органические вещества: углеводы, белки нуклеиновые кислоты, АТФ, липиды, их элементарное строение, роль в клетке. Ферменты, их роль в регуляции процессов жизнедеятельности.

Лабораторная работа № 1.

Номер урока: 6 дата:

Каталитическая активность ферментов в живых тканях.

Тип урока – комбинированный урок

Цель урока: способствовать развитию интереса к химической и биологической наукам, сформировать понятие о органических веществах клетки, раскрыть межпредметные связи; сформировать знания о химическом составе клетки.

Оборудование: мультимедийная презентация, карточки, учебник 9 класса Биология Общие закономерности С.Г. Мамонтов, В.Б. Захаров

Ключевые слова: белки, аминокислоты, углеводы, моносахариды, липиды и жирные кислоты, нуклеиновые кислоты – ДНК, РНК (иРНК, тРНК, рРНК)

ПЛАН УРОКА

  1. Организационный момент

  2. Актуализация знаний

  3. Мотивация и совместное целеполагание урока

  4. Изучение нового материала

  5. Первичное закрепление знаний

  6. Подведение итогов, рефлексия

  7. Домашнее задание

ХОД УРОКА

2. АКТУАЛИЗАЦИЯ ЗНАНИЙ

Индивидуальные карточки (по теме «Химический состав клетки. Неорганические вещества, входящие с восстав клетки»)

Биологический диктант

Макроэлементы, микроэлементы, биоэлементы, клетка, буферность

Полетный опрос

  1. Какие вещества относятся к макроэлементам? (кислород, водород, азот, углерод)

  2. Какие вещества относятся к микроэлементам? (натрий, кальций, фосфор, калий, сера, железо и др.)

  3. Какова роль кальция в организме? (свертываемость крови, формирование костной ткани)

  4. Какова роль железа и магния? (перенос кислорода и участие в фотосинтезе соответственно)

  5. Назовите свойства воды (полярность, диполь, теплопроводность, теплоемкость)

  6. Приведите примеры солей, содержащихся в клетке …(катионы калия, натрия и кальция)

3. МОТИВАЦИЯ И СОВМЕСТНОЕ ЦЕЛЕПОЛАГАНИЕ УРОКА

Ребята, сегодня на уроке мы будем продолжать рассматривать химический состав клетки, изучим органические вещества, которые содержатся в клетке, их структуру, функции и взаимосвязь.

4. ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Ведущими органическими веществами, входящими в состав клетки, являются белки, углеводы, жиры, нуклеиновые кислоты (ДНК и РНК) и аденозинтрифосфорная кислота (АТФ).

БЕЛКИ — основная составная часть любой живой клетки. На их долю приходится половина сухого вещества клетки (после удаления из нее волы). Белки выполняют в ней чрезвычайно разнообразные функции, из которых самая важная — каталитическая функция. Любая химическая реакция в клетке протекает при участии особых биологических катализаторов — ферментов. А любой фермент — белок. Следовательно, без белков-ферментов клетка не смогла бы осуществить ни одной химической реакции, а значит не смогла бы ни расти, ни размножаться, ни функционировать. Где нет белка, там нет жизни. Именно это и заставило Ф. Энгельса определить жизнь как форму cуществования белковых тел — такую форму, которая реализуется через постоянный обмен веществ.

Помимо каталитической, очень важна структурная (строительная) функции белков. Белки входят в состав всех мембран, окружающих и пронизывающих клетку. В соединении с ДНК белок составляет тело хромосом, а в соединении с РНК — тело рибосом. Растворы низкомолекулярных белков входят в состав жидких фракций клетки. Наконец, именно с белками связано осуществление таких функций, как перенос кислорода в теле организма (его осуществляет белок крови — гемоглобин), сокращение мускулатуры, передача раздражения по нервам и целый ряд других, т.е. двигательную, транспортную и защитную (антитела) функции.

Химический состав белков чрезвычайно разнообразен, и в то же время все они построены по одному принципу — по принципу полимера: молекула одного белка состоит из многих не вполне одинаковых мономеров — молекул аминокислот. Всего известно 20 различных аминокислот, входящих в состав белков. Молекулы белков имеют 4 структуры: первичную, вторичную, третичную и четвертичную.

УГЛЕВОДЫ — столь же необходимая составная часть любой клетки, как и белок. В растительных клетках их значительно больше, чем в животных. Углеводы — своеобразное «топливо» для живой клетки: окисляясь, они высвобождают химическую энергию, которая расходуется клеткой на все процессы жизнедеятельности. У растений углеводы выполняют и важные строительные функции: из них образуются оболочки как живых клеток, так и мертвых (древесина).

По химическому составу углеводы делятся на две большие группы: простые и сложные углеводы, моносахариды и полисахариды. Наиболее широкоизвестные простые углеводы содержат 5 (пентозы) или 6 (гексозы) атомов углерода и столько же молекул воды. Примерами простых углеводов могут служить глюкоза и фруктоза, находящиеся во многих плодах растений.

Сложные углеводы — это соединение нескольких молекул простых углеводов в одну. Пищевой сахар (сахароза), например, состоит из одной молекулы глюкозы и одной молекулы фруктозы. Значительно большее количество молекул простых углеводов входит в такие сложные углеводы, как крахмал, клетчатка (целлюлоза), гликоген. В молекуле клетчатки, например, до 100—150 молекул глюкозы.

Функции углеводов: строительная и энергетическая.

ЛИПИДЫ — также обязательная составная часть любой клетки. Как и углеводы, жиры используются клеткой как источник энергии: при расщеплении жиров освобождается энергия. Подкожный жир играет важную теплоизоляционную роль у многих животных (водные млекопитающие). У животных, впадающих зимой в спячку, жиры обеспечивают организм необходимой энергией, так как питательные вещества извне в это время не поступают. Жиры составляют запас питательных веществ и в семенах многих растений.

По химическому составу жиры представляют собой соединение глицерина с различными жирными кислотами. Именно этим высокомолекулярным кислотам жиры и липоиды обязаны своим важным биологическим свойством: они не растворяются в воде. Поэтому жироподобные вещества — липоиды входят в состав всех мембран клетки и ее структурных элементов.

Функции липидов: энергетическая, строительная и транспотрная

НУКЛЕИНОВЫЕ КИСЛОТЫ впервые были обнаружены в ядрах клеток. Существует два типа нуклеиновых кислот: дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (сокращенно РНК). ДНК содержится преимущественно в ядре клетки, РНК — в цитоплазме и в ядре. Значение нуклеиновых кислот состоит в том, что они обеспечивают синтез в клетке специфических для нее белков. Благодаря функции ДНК, связанной с синтезом белков-ферментов, осуществляется и ее генетическая роль: ДНК является носителем наследственной информации.

Схема строения нуклеотида

В состав любого нуклеотида входят два постоянных химических компонента (фосфорная кислота и углевод дезоксирибоза) и один переменный, который может быть представлен одним из четырех азотистых оснований: аденином, гуанином, тимином или цитозином. Поэтому в молекулах ДНК всего 4 разных нуклеотида. Разнообразие же молекул ДНК огромно и достигается благодаря различной последовательности нуклеотидов в цепочке ДНК. Таким образом, и ДНК и белки построены по одному и тому же химическому принципу: специфичность ДНК обусловливается порядком нуклеотидов в ее молекуле, специфичность белка — порядком аминокислот в его молекуле. Как будет видно из дальнейшего, это совпадение имеет первостепенное значение при синтезе белков.

Молекула РНК представляет собой не двойную, а одинарную цепочку из нуклеотидов. Поэтому РНК не способна к саморепродукции. В состав молекул РНК также входят 4 нуклеотида, но один из них иной, чем в ДНК: вместо тимина в РНК содержится другое азотистое соединение — урацил. Кроме того, в состав всех нуклеотидов молекулы РНК входит не дезоксирибоза, а рибоза. Молекулы РНК не столь велики, как молекулы ДНК. О двух формах РНК будет сказано дальше.

Задание: Сравнительная характеристика ДНК и РНК

5. ПЕРВИЧНОЕ ЗАКРЕПЛЕНИЕ ЗНАНИЙ

Задания по группам

1 группа

Дайте определения понятиям: белки, нуклеиновые кислоты

Назовите функции углеводов и липидов

2 группа

Дайте определения понятиям: углеводы, липиды

Назовите функции белков

3 группа

Дайте определения понятиям: белки, углеводы

Назовите функции НК

ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ – ТЕСТОВЫЕ ЗАДАНИЯ ПО ВАРИАНТАМ

  1. ПОДВЕДЕНИЕ ИТОГОВ, РЕФЛЕКСИЯ

Что вы узнали нового? Что Вам понравилось на уроке? Сегодня хорошо работали….., получают 5…4…., мало отвечали….. (фамилии)

Каково настроение на уроке???

  1. ДОМАШНЕЕ ЗАДАНИЕ

параграф 22, ответить на вопросы в конце пар

Пищевые вещества и их роль в питании школьников

Белки и аминокислоты.

Белки нередко называют основными строительными блоками организма. Нет ни одного органа, ни одной ткани, ни одной клеточной или субклеточной структуры организма взрослого или ребенка, в состав которых не входил бы белок. Белок необходим и для мышечной работы, и для успешного обучения, и для поддержания нормального иммунитета, и выполнения многих других «обязанностей». Важно подчеркнуть, что основным источником белка человеческого тела служат белки пищи, поэтому достаточное поступление белков с пищей — необходимое условие нормального роста, сохранения здоровья и способности к обучению. Превращение белков пищи в белки органов и тканей является сложным многоступенчатым процессом, который начинается еще в ротовой полости, а заканчивается на уровне клетки. В результате этого процесса, в котором участвует целый каскад пищеварительных ферментов желудка и кишечника, огромные полимерные молекулы белка расщепляются на аминокислоты (до 20). Из них 8 относятся к числу так называемых незаменимых для человека, которые абсолютно необходимы для нормального течения различных физиологических и обменных процессов. Организм не способен к их образованию. Их единственным источником, следовательно, может служить только пища. При низком содержании незаменимых аминокислот в рационе образование в организме полноценных белков становится невозможным, что ведет вначале к предболезни, а затем и к болезни. Наиболее благоприятным аминокислотным составом обладают белки животного происхождения — молока и молочных продуктов, мяса, рыбы, а также белки бобовых — сои и других. Эти продукты, белок которых, как говорят специалисты, характеризуется высокой биологической ценностью, должны постоянно присутствовать в рационе человека. Для растущего организма ребенка поступление белков с высокой биологической ценностью особенно важно, поскольку рост характеризуется чрезвычайно большой потребностью в белке и незаменимых аминокислотах.

Школьнику требуется ежедневно около 70-90 г белков: для этого необходимо съесть примерно 100-200 г мяса, 30-50 г рыбы, 400-500 мл молока или кисломолочных продуктов, 30-40 г творога и другое.

Дефицит белков ведет к задержке роста, снижению устойчивости к инфекциям и действию неблагоприятных внешних факторов, нарушению полового развития, малокровию.

Жиры.

Под жирами (а точнее липидами) в химии понимают вещества, которые растворяются в так называемых органических растворителях (бензине, ацетоне, спирте и др.), но не растворяются в воде; Пищевые жиры включают большое число различных видов соединений такого рода, среди которых основными являются собственно жиры (триглицериды), фосфолипиды и стероиды. К последнему классу принадлежит, в частности, холестерин

Основными компонентами и триглицеридов, и фосфолипидов являются жирные кислоты, которые делятся на насыщенные, мононенасыщенные и полиненасыщенные

Жиры, так же как и белки, — важнейшие «строительные» элементы клеток, органов и тканей. Они не только участвуют в построении клеточных и субклеточных мембран, но и активно регулируют их проницаемость и другие функциональные свойства. Жиры служат важным клеточным «топливом». При «сгорании» в организме 1 г жира выделяется в 2 раза больше энергии (9 ккал), чем при сгорании 1 г белков или углеводов (4 ккал).

Правильно построенный рацион должен включать такое количество жиров, которое обеспечит не более 30-35% от общей энергетической ценности (калорийности) рациона. Например: если подросток нуждается в получении с пищей 2500 ккал, то жиры должны обеспечить 750-875 ккал, что соответствует потреблению 83-97 г жиров. При этом на долю так называемых насыщенных жиров, содержащих в основном насыщенные жирные кислоты, которыми богаты говяжий, свиной, бараний и другие животные жиры, должно приходиться не более 10% от общей калорийности рациона. Избыток насыщенного жира в питании, в том числе и в питании детей и подростков, служит одной из причин развития атеросклероза, инфаркта миокарда и других тяжелых заболеваний сердечно-сосудистой системы. Одна из составных частей насыщенных жиров — холестерин, которому раньше ошибочно приписывали все неблагоприятные эффекты избыточного потребления насыщенных жиров. Важно, чтобы в составе пищевых жиров было достаточно ненасыщенных жиров, включающих моно- и полиненасыщенные жирные кислоты. Ими богаты растительные масла — подсолнечное, кукурузное, оливковое и др..

 Полиненасыщенные жирные кислоты, также как и некоторые аминокислоты, относятся к числу незаменимых пищевых факторов. Их дефицит в питании ведет к задержке роста, снижению иммунного ответа, изменению свойств крови (повышению свертываемости), ухудшению состояния кожи (потере эластичности, появлению прыщей и др.). Иногда полиненасыщенные жирные кислоты называют витамином F (от Fatty acids — жирные кислоты), причем врачи-дерматологи обнаружили высокую эффективность различных кремов, содержащих витамин F, в лечении болезней кожи.

Физиологическая роль углеводов.

Поможем написать любую работу на аналогичную
тему

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Физиологическое значение углеводов в основном определяется их энергетическими свойствами. Углеводы являются динамогенными поставщиками энергии, используемыми в организме в процессе мышечной деятельности. Каждый грамм углеводов обеспечивает поступление 16,7 кДж (4 ккал). Значение углеводов как источника энергии определяется их способностью окисляться в организме, как аэробным, так и анаэробным путем. Углеводы в наибольшей степени способны удовлетворить потребности организма в энергии и способствовать снижению ацидотических сдвигов. При всех видах физического труда отмечается повышенная потребность в углеводах. Углеводы входят в состав клеток и тканей и в какой-то мере участвуют в пластических процессах.

Несмотря на постоянное расходование клетками и тканями своих углеводов на энергетические цели содержание углеводов в них поддерживается на постоянном уровне при условии достаточного их поступления с пищей.

Некоторые углеводы обладают выраженной биологической активностью, выполняя в организме специализированные функции. К таким углеводам относятся аскорбиновая кислота, обладающая С-витаминными свойствами, гепарин, предотвращающий свертывание крови в сосудах, гиалуроновая кислота, препятствующая проникновению бактерий через клеточную оболочку, олигосахариды женского молока, задерживающие развитие некоторых кишечных бактерий, гетерополисахариды крови, определяющие специфичность групп крови, и др. Углеводы и их метаболиты играют важную роль в синтезе нуклеиновых кислот, аминокислот, гликопротеинов, мукополисахаридов, коэнзимов и других жизненно необходимых веществ.

В организме углеводы депонируются ограниченно и запасы их невелики. Имеющееся в печени углеводное депо характеризуется относительно небольшой емкостью, и для удовлетворения потребностей организма углеводы поступают бесперебойно в составе пищи. Углеводы тесно связаны с обменом жира — при больших физических нагрузках, когда расход энергии не покрывается углеводами пищи и углеводными запасами организма, происходит образование сахара из жира, всегда в достаточном количестве содержащегося в жировых депо организма. Однако чаще наблюдается обратное влияние, т.е. образование новых количеств жира и пополнение ими жировых депо организма за счет избыточного поступления углеводов с пищей.

Избыток углеводов — широко распространенное явление. Это один из основных факторов в формировании избыточной массы тела.

Углеводы являются основной частью пищевого рациона. За счет углеводов обеспечивается около половины суточной энергетической ценности пищевого рациона, Потребление углеводов составляет 400-500 г/сут. Удовлетворение потребности в углеводах осуществляется за счет растительных источников. B растительных продуктах (зерновые и др.) углеводы составляют не менее 75% сухого вещества. Потребность в углеводах может удовлетворяться и за счет сахара, который представляет собой чистый углевод.

Усвояемость углеводов достаточно высока: в зависимости от пищевого продукта и характера углеводов, она колеблется от 85 до 98%. Так, коэффициент усвояемости углеводов хлебных и крупяных продуктов составляет 94—96, овощей — 85, картофеля — 95, фруктов и ягод — 90, кондитерских изделий — 95, сахара — 99, молока и молочных продуктов-98. Правильная кулинарная обработка, измельчение и тщательная тепловая обработка повышают усвояемость углеводов и других компонентов пищи.

Значение животных продуктов как источника углеводов невелико. Основным углеводом животного происхождения является гликоген, обладающий свойствами крахмала, содержится в животных тканях в небольшом количестве. Другой углевод лактоза (молочный сахар) — содержится в молоке в количестве 5 г на 100 г. продукта и более. При систематическом потреблении молока, оно может служить источником углеводов, особенно в детском и пожилом возрасте.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Важность углеводов в клеточной мембране — класс биологии [видео 2021]

Что такое углеводы?

Углеводы состоят из молекул сахара. Простые углеводы включают глюкозу и фруктозу, которые являются моносахаридами (одна молекула сахара). Они могут объединяться в сахарозу, дисахарид (два сахарных кольца).

Сложные углеводы — это крахмалы, содержащиеся в таких продуктах, как пшеница, картофель и бобы, и часто они состоят из большого количества связанных вместе молекул сахара (полисахаридов).

Защита клетки

Давайте подробнее рассмотрим роль углеводов. Одна из наиболее важных функций углеводов — формирование структуры, называемой гликокаликсом . Это плащ вокруг камеры. Если клеточная мембрана похожа на городскую стену, то гликокаликс — это еще одна внешняя стена, которая используется в качестве первого слоя защиты.

Известно, что у бактерий гликокаликс особенно силен. Это позволяет бактериям слипаться, создавая биопленку.Одна только бактерия со своим гликокаликсом устойчива. Но если бактерии объединяются и образуют единую прочную оболочку из гликокаликса (биопленку), они становятся сильнее.

Биопленки устойчивы к вредным факторам, что мешает нам, людям, бороться с бактериальными инфекциями и зубным налетом, поскольку они содержат биопленки. Люди бросают чистящие средства, такие как отбеливатель, на биопленки в ванне, но при этом у них все еще возникают проблемы с удалением бактерий из нежелательных участков.

Гликокаликс также выполняет важные функции у человека.Он позволяет клеткам внутри кровеносных сосудов противостоять сильному потоку жидкости по их поверхностям. Он защищает микроворсинки в кишечнике, которые поглощают питательные вещества, а гликокаликс даже помогает в расщеплении пищи для этого поглощения, удерживая пищеварительные ферменты в своей оболочке.

Распознавание клеток

Углеводы в мембране также играют роль в распознавании клеток. Углеводные цепи несут сигнатуру, как флаг, которая говорит, к какому организму принадлежит клетка (хозяину или злоумышленнику).

Вернемся к аналогии с нашим городом. Если рыцарь посещает город, у него будет герб на щите или доспехах. Если этот герб совпадает с гербом города, его впустят. Если нет, на него могут напасть. То же самое и с клетками. Клетки-нарушители, у которых нет такого же гребня, как у клетки-хозяина, могут вызвать иммунный ответ и подвергнуться атаке. В случае клетки гребень состоит (частично) из углевода.

Различные углеводы в мембране

Подобно мифическому зверю «химера», который может быть наполовину львом или наполовину змеей, типы молекул иногда смешиваются.Итак, мы можем добавить несколько новых типов молекул к нашей картине клеточной мембраны.

Гликолипиды, гликопротеины и протеогликаны являются компонентами клеточной мембраны.

  • Гликолипиды — это углевод плюс липид. («Глико» означает «сахар» и относится к углеводу, потому что углевод состоит из одного или нескольких сахарных колец). Гликолипиды помогают поддерживать стабильность клеточной мембраны и облегчают межклеточные взаимодействия.
  • Гликопротеин представляет собой смесь углеводов и белков, но в основном это белок.Гликопротеины являются компонентом некоторых антигенов, например сигнала (рыцарский герб), который маркирует другую клетку как чужеродную или знакомую. Это очень важно для иммунной системы, чтобы реагировать на захватчиков.
  • Протеогликан представляет собой смесь углеводов и белков, но в основном это углеводы. Гликопротеины и протеогликаны образуют гликокаликс, ту прочную «клеточную оболочку», о которой мы говорили.

Краткое содержание урока

Клеточная мембрана заполнена белками, липидами и углеводами. Углеводы состоят из молекул сахара и могут быть соединены с белками ( гликопротеинов и протеогликанов ) или липидами ( гликолипидов ). Углеводы защищают клетку, образуя гликокаликс , который особенно силен у бактерий и позволяет формировать биопленки. Гликокаликс также важен для человека; он защищает клетки в артериях и венах от силы кровотока, защищает микроворсинки в кишечнике от суровых, кислых условий и способствует процессу пищеварения.Углеводы играют важную роль в качестве антигенов, позволяя клетке дифференцировать другие клетки как хозяина или как нарушителя.

Обзорные заметки

Углеводы играют важную роль в клеточных мембранах.
Углеводы
Углеводы образуются из молекул сахара и содержатся в крахмале таких пищевых продуктов, как картофель и бобы
Углеводы создают гликолакс, который защищает клетки от силы кровотока, защищает микроворсинки в желудке и способствует процессу пищеварения
Углеводные цепи помогают определить, к какому организму принадлежит клетка.
Типы углеводов в клеточной мембране: гликолипиды, протеогликаны и гликопротеины

Результаты обучения

Когда вы закончите, вы сможете:

  • Описать клеточную мембрану
  • Обсудить важность углеводов в клеточной мембране и в распознавании клеток
  • Перечислите компоненты клеточной мембраны

Углеводы

Моносахариды

Углеводы — самая распространенная биомолекула на Земле.Живые организмы используют углеводы в качестве доступной энергии для подпитки клеточных реакций и структурной поддержки внутри клеточных стенок. Клетки прикрепляют молекулы углеводов к белкам и липидам, изменяя структуры для повышения функциональности. Например, небольшие молекулы углеводов, связанные с липидами клеточных мембран, улучшают идентификацию клеток, передачу сигналов и сложные реакции иммунной системы. Углеводные мономеры дезоксирибоза и рибоза являются неотъемлемыми частями молекул ДНК и РНК.

Чтобы понять, как углеводы функционируют в живых клетках, мы должны понять их химическую структуру.Структура углеводов определяет, как энергия сохраняется в углеводных связях во время фотосинтеза и как разрушение этих связей высвобождает энергию во время клеточного дыхания.

Биомолекулы соответствуют определенным структурным критериям, чтобы их можно было классифицировать как углеводы. Простые углеводы представляют собой модификации коротких углеводородных цепей. Несколько гидроксилов и одна карбонильная функциональная группа модифицируют эти углеводородные цепи, чтобы создать моносахарид, основную единицу всех углеводов.

Моносахариды состоят из углеродной цепи из трех или более атомов углерода, содержащей гидроксильную группу, присоединенную к каждому атому углерода, кроме одного.Одинокий атом углерода связан двойной связью с атомом кислорода, и эта карбонильная группа может находиться в любом положении вдоль углеродной цепи. Следовательно, один атом кислорода и два атома водорода присутствуют на каждом атоме углерода в моносахариде. Следовательно, мы можем определить моносахариды как имеющие молекулярную формулу (CH 2 O) n , где n равно количеству атомов углерода и должно быть больше или равно трем.

Моносахариды (греч., Что означает «единичный сахар») представляют собой простые сахара и часто называются с помощью суффикса –оза.Сахара с карбонильной группой, присоединенной к атому углерода на конце цепи, представляют собой альдозы («альдегидный сахар»), такие как глюкоза. Когда карбонильная группа расположена где угодно, кроме конца углеродной цепи, моносахарид представляет собой кетозу («кетоновый сахар»), такую ​​как фруктоза.

Поскольку положение отдельных атомов в молекуле сахара варьируется, многие моносахариды являются изомерами друг друга. Например, глюкоза и фруктоза имеют общую молекулярную формулу C 6 H 12 O 6 , но структурно различны.Различия между изомерами не всегда так очевидны, как в структурных изомерах, таких как глюкоза и фруктоза. Более тонкие стереоизомеры имеют одинаковый порядок ковалентных связей между атомами, но различаются трехмерными положениями атомов вокруг одного или нескольких отдельных атомов углерода. Например, глюкоза и галактоза являются стереоизомерами и очень похожи на рисунках. Мелкие детали, например, простирается ли -ОН с правой или левой стороны каждого атома углерода, чрезвычайно важны для вкуса, химической активности и здоровья человека.

В кристаллической форме большинство моносахаридов имеют структуру с «длинной цепью». Напротив, сахара, растворенные в растворе, таком как жидкость внутри клетки, часто превращаются в «кольцевую» структуру. На молекулярную формулу сахара не влияют превращения длинной цепи в кольцевую. Кольцевые формы сахаров — это структуры, которые реагируют с образованием димеров углеводов и полимеров.

Некоторые моносахариды модифицируются клеточными ферментами для усиления или изменения их клеточной функции.Хотя модифицированные сахара не соответствуют формальному определению углеводов, они образуются путем небольших модификаций обычных моносахаридов. Дезоксирибоза, ключевой сахарный компонент всех молекул ДНК, является «дезоксисахаром». Для образования дезоксирибозы 5-углеродный моносахарид рибоза «дезоксигенируется», удаляя одну конкретную гидроксильную группу и заменяя ее атомом водорода. Напротив, «аминосахара» модифицируются путем добавления новой функциональной группы. В аминосахаре одна или несколько гидроксильных групп заменены азотсодержащими функциональными группами.Аминосахара играют важную роль в иммунной системе, нейрональной обработке и структурной поддержке.

Функциональные группы углеводов

Это задание проверяет вашу способность определять все функциональные группы моносахаридов в углеводах.

Структура и функции углеводов

Углеводные мономеры, короткие цепи и полимеры выполняют важные клеточные функции для поддержания жизни. Количество и тип используемых моносахаридов, а также положение связи между ними определяют трехмерную структуру каждого углевода.Признавая структурные и функциональные различия между обычными углеводными мономерами и полимерами, мы можем лучше понять роль, которую углеводы играют внутри клеток и в рационе человека.

Клетки строят углеводные полимеры, используя энергию для образования гликозидных связей, связей между моносахаридами. Реакция синтеза дегидратации формирует связь между атомами углерода в двух моносахаридах, помещая атом кислорода между ними и высвобождая молекулу воды. Дисахарид образуется при соединении двух мономеров.Сахароза (столовый сахар) производится путем соединения двух определенных мономеров, глюкозы и фруктозы. Различные пары моносахаридов производят многие из обычных дисахаридных сахаров, которые мы связываем с пищей, включая сахарозу, мальтозу (солодовый сахар, два мономера глюкозы) и лактозу (молочный сахар, мономеры глюкозы и галактозы).

Углеводные цепи удлиняются за счет дополнительных реакций синтеза дегидратации, добавляя по одному мономеру к растущей цепи. Короткие цепи, называемые олигосахаридами, часто присоединяются к липидам и белкам.Эти углеводные «метки» поддерживают функции иммунной системы, участвуют в клеточной коммуникации и помогают прикреплять клетки к внеклеточным поверхностям и другим клеткам.

Углеводные цепи с сотнями или более моносахаридными звеньями являются полисахаридами. В отличие от более коротких цепей углеводные полимеры часто состоят из моносахаридной единицы одного типа. Различия в структуре и функциях этих полимеров возникают в основном из-за различий в гликозидной связи, а не из-за наличия разных моносахаридов.Гликозидные связи включают ковалентные связи от одного атома углерода в каждом моносахариде до одного атома кислорода между ними. Однако то, какие атомы углерода участвуют в этой ковалентной связи, может быть различным в каждой молекуле углевода.

Наиболее распространенные полисахариды построены исключительно из мономеров глюкозы, в то время как значительные структурные различия между этими полисахаридами возникают в основном из-за положения и количества гликозидных связей в каждой единице глюкозы. Хотя эти различия в связях кажутся незначительными на первый взгляд, функциональный эффект незначительных структурных различий в каждой гликозидной связи огромен.

Построение и расщепление углеводов

Это задание проверяет вашу способность идентифицировать реагенты и продукты в синтезе и гидролизе углеводов.

Полисахариды

Полисахариды, «сложные углеводы», играют жизненно важную роль в хранении энергии и структурную роль в живых организмах, делая углеводы самыми распространенными биомолекулами на Земле. Полисахариды — отличные молекулы для хранения энергии, потому что они легко строятся и расщепляются ферментами.Образуя довольно компактные структуры, полисахариды позволяют накапливать энергию без места, необходимого для пула свободных мономеров глюкозы. Другие полисахариды образуют прочные волокна, которые обеспечивают защиту и структурную поддержку как у растений, так и у животных.

При небольших различиях в связи между мономерами полимеры могут функционировать как компактные аккумуляторы энергии в крахмале и гликогене или как прочные защитные волокна в целлюлозе и хитине. Понимание структуры, синтеза и распада углеводных полимеров обеспечивает основу для понимания их функции в живых клетках.

Животные, включая человека, создают полимеры глюкозы, называемые гликогеном. Положение гликозидной связи между мономерами глюкозы заставляет полимеры гликогена скручиваться в спиральную форму. Полимеры гликогена значительно разветвлены, с несколькими мономерами в первичной цепи, содержащими вторую гликозидную связь с другой глюкозой. Вторые места прикрепления позволяют более коротким цепям глюкозы отходить от основной цепи, упаковывая больше единиц глюкозы в компактную спиральную структуру.

Хотя структура гликогена позволяет людям и другим животным накапливать энергию в относительно компактной форме, полимер может быстро разлагаться. Животные инициируют ферментативные реакции гидролиза для расщепления гликогена, когда требуется энергия. Для быстрого доступа к энергии гликоген у человека хранится в основном в двух местах: в печени для легкой доставки в кровоток и в мышцах для непосредственного использования по мере необходимости.

Растения синтезируют два типа полисахаридов, крахмал и целлюлозу.Гликозидные связи между глюкозными единицами в растительном крахмале аналогичны связям в гликогене животного происхождения. Соответственно, молекулы крахмала похожи по своей структуре, образуют компактные спирали и играют аналогичную роль в хранении энергии для растений. В отличие от гликогена, молекулы крахмала сильно различаются по уровню разветвления. Большинство растений образуют смесь полимеров крахмала с минимальным разветвлением или без него и полимеров с обширным разветвлением.

Помимо обеспечения энергией растений, которые их синтезируют, крахмал служит основным источником пищи для многих животных.Люди и другие животные производят ферменты, которые в процессе пищеварения расщепляют молекулы крахмала на мелкие фрагменты. У людей это пищеварение начинается во рту с помощью фермента амилазы, который расщепляет полимеры крахмала на дисахариды (мальтозу). Чтобы на себе ощутить переваривание крахмала, попробуйте долго жевать несоленый крекер. Через некоторое время крекер стал сладким на вкус? Это образование дисахаридов мальтозы во рту при переваривании крахмала. Соль может скрыть многие другие вкусы, поэтому этот мини-эксперимент лучше всего подходит для несоленых крекеров.

Растения синтезируют структурный полисахарид, называемый целлюлозой. Хотя целлюлоза состоит из глюкозы, гликозидные связи между мономерами глюкозы отличаются от связей в гликогене и крахмале. Эта уникальная структура связи заставляет целлюлозные цепи образовывать линейные плоские нити вместо спиралей. Плоские целлюлозные нити могут образовывать плотно упакованные пучки. Прочные и жесткие волокна образуются в результате образования водородных связей между полярными гидроксильными группами в связанных полимерах. Волокна целлюлозы обеспечивают структурную поддержку растений.Без целлюлозы стебли цветов и стволы деревьев не могли бы сохранять свою жесткую, прямую высоту.

Структурные различия между гликозидными связями в крахмале и целлюлозе влияют на способность животных переваривать растительную пищу. Ферменты, такие как амилаза, не могут разрушать полимеры целлюлозы. Некоторые животные, в том числе коровы и термиты, переваривают целлюлозу, размещая в своем пищеварительном тракте особые микроорганизмы, вырабатывающие ферменты, разлагающие целлюлозу. Однако люди и большинство животных не вырабатывают фермент, способный разлагать целлюлозу, оставляя волокна целлюлозы непереваренными, когда они проходят через организм.Люди действительно используют растительную целлюлозу недиетическими способами, обрабатывая деревья, хлопок и другие растения для производства бумаги, одежды и многих других распространенных материалов. Люди также собирают большие деревья, чтобы строить конструкции из древесины, богатой целлюлозой.

Некоторые животные синтезируют особый полисахарид, хитин, который образует защитную оболочку экзоскелета. Гликозидные связи в хитине очень похожи на связи целлюлозы, в результате чего хитин также образует линейные, хорошо упакованные листы из прочных волокон.В отличие от целлюлозы, хитин синтезируется из модифицированного моносахарида, называемого аминосахаром. Мономер хитина получают из глюкозы путем замены одной гидроксильной группы азотсодержащей функциональной группой. Взаимодействие между азотсодержащими группами и остальными гидроксильными группами в полимерной структуре хитина делает ее чрезвычайно прочной и жесткой. Хитин обеспечивает защиту и структурную поддержку многих живых организмов, включая формирование экзоскелетов моллюсков и насекомых, а также клеточных стенок грибов.

Бросок углеводного кольца

В этом упражнении вы классифицируете характеристики нескольких основных углеводов.

углеводов | Определение, классификация и примеры

Классификация и номенклатура

Узнайте о структурах и использовании простых сахаров глюкоза, фруктоза и галактоза

Моносахариды играют важную роль в передаче энергии.

Encyclopædia Britannica, Inc. Посмотреть все видео для этой статьи

Хотя для углеводов был разработан ряд схем классификации, разделение на четыре основные группы — моносахариды, дисахариды, олигосахариды и полисахариды — используемые здесь, являются одними из наиболее распространенных. .Большинство моносахаридов или простых сахаров содержится в винограде, других фруктах и ​​меде. Хотя они могут содержать от трех до девяти атомов углерода, наиболее распространенные представители состоят из пяти или шести, соединенных вместе в цепочечную молекулу. Три самых важных простых сахара — глюкоза (также известная как декстроза, виноградный сахар и кукурузный сахар), фруктоза (фруктовый сахар) и галактоза — имеют одинаковую молекулярную формулу (C 6 H 1 2 O 6 ), но поскольку их атомы имеют разное структурное расположение, сахара имеют разные характеристики; я.е., они являются изомерами.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Незначительные изменения в структурном расположении, обнаруживаемые живыми существами, влияют на биологическое значение изомерных соединений. Известно, например, что степень сладости различных сахаров различается в зависимости от расположения гидроксильных групп (OH), составляющих часть молекулярной структуры. Однако прямая корреляция, которая может существовать между вкусом и каким-либо конкретным структурным устройством, еще не установлена; то есть еще невозможно предсказать вкус сахара, зная его конкретное структурное расположение.Энергия в химических связях глюкозы косвенно снабжает большинство живых существ большей частью энергии, необходимой им для продолжения своей деятельности. Галактоза, которая редко встречается в виде простого сахара, обычно сочетается с другими простыми сахарами для образования более крупных молекул.

Две связанные друг с другом молекулы простого сахара образуют дисахарид или двойной сахар. Дисахарид сахароза или столовый сахар состоит из одной молекулы глюкозы и одной молекулы фруктозы; Наиболее известные источники сахарозы — сахарная свекла и тростниковый сахар.Молочный сахар или лактоза и мальтоза также являются дисахаридами. Прежде чем энергия дисахаридов может быть использована живыми существами, молекулы должны быть разбиты на соответствующие моносахариды. Олигосахариды, которые состоят из трех-шести моносахаридных единиц, довольно редко встречаются в природных источниках, хотя было идентифицировано несколько производных растений.

кристаллы лактозы

Кристаллы лактозы показаны суспендированными в масле. Их отличная форма позволяет идентифицировать их в продуктах питания, исследуемых для исследования.

© Кайла Саслоу, любезно предоставлено Университетом Висконсин-Мэдисон

Полисахариды (термин означает много сахаров) представляют собой большинство структурных и энергетических углеводов, встречающихся в природе. Большие молекулы, которые могут состоять из 10 000 связанных вместе моносахаридных единиц, полисахариды значительно различаются по размеру, сложности структуры и содержанию сахара; К настоящему времени идентифицировано несколько сотен различных типов. Целлюлоза, основной структурный компонент растений, представляет собой сложный полисахарид, состоящий из множества связанных между собой единиц глюкозы; это наиболее распространенный полисахарид.Крахмал, содержащийся в растениях, и гликоген, содержащийся в животных, также представляют собой сложные полисахариды глюкозы. Крахмал (от древнеанглийского слова stercan , что означает «застывать») содержится в основном в семенах, корнях и стеблях, где он хранится в качестве доступного источника энергии для растений. Растительный крахмал может быть переработан в такие продукты, как хлеб, или может потребляться напрямую, например, в картофеле. Гликоген, состоящий из разветвленных цепочек молекул глюкозы, образуется в печени и мышцах высших животных и хранится в качестве источника энергии.

Окончание общей номенклатуры моносахаридов — -оза ; таким образом, термин пентоза ( пент = пять) используется для моносахаридов, содержащих пять атомов углерода, а гексоза ( гекс, = шесть) используется для тех, которые содержат шесть. Кроме того, поскольку моносахариды содержат химически реактивную группу, которая представляет собой либо альдегидную группу, либо кетогруппу, их часто называют альдопентозами, или кетопентозами, или альдогексозами, или кетогексозами.Альдегидная группа может находиться в положении 1 альдопентозы, а кетогруппа может находиться в другом положении (например, 2) внутри кетогексозы. Глюкоза представляет собой альдогексозу, то есть она содержит шесть атомов углерода, а химически реактивная группа представляет собой альдегидную группу.

Какова роль углеводов? | Здоровое питание

Автор: Джанет Рене Обновлено 6 декабря 2018 г.

Жир, белок и углеводы составляют три основных макроэлемента в вашем рационе.Углеводы бывают разных форм и содержатся в самых разных продуктах. Углеводы являются наиболее важным источником топлива для организма и необходимы для сбалансированного питания, но некоторые источники углеводов более полезны для здоровья, чем другие.

Углеводы обеспечивают немедленное топливо

Каждая клетка вашего тела зависит от глюкозы как топлива, особенно клетки вашего мозга. Углеводы обеспечивают немедленное топливо в виде глюкозы, чтобы ваши клетки могли выполнять свои функции. Вы получаете углеводы во многих формах.Простые углеводы, включая фруктозу, галактозу, глюкозу и сахарозу, быстро перевариваются и превращаются в топливо. Вы получаете их из таких продуктов, как фрукты, овощи и упакованные продукты с добавлением сахара. Независимо от того, какой сахар вы потребляете, ваше тело превращает его в глюкозу, и он поступает в клетки, чтобы удовлетворить ваши потребности в энергии.

Углеводы сохраняют энергию на будущее

Ежедневное потребление углеводов обеспечивает топливо для дальнейшего использования. Когда ваши непосредственные потребности в топливе удовлетворяются, организм накапливает дополнительные углеводы в виде гликогена.Эта форма углеводов играет важную роль в поддержании вашего уровня энергии между приемами пищи. Поскольку уровень сахара в крови должен оставаться постоянным, организм превращает гликоген в глюкозу, когда уровень сахара в крови падает. Это нормализует уровень сахара в крови и удерживает его в строго контролируемом диапазоне.

Накопление углеводов позволяет несколько часов обходиться без еды и при этом поддерживать нормальный уровень сахара в крови, например, в течение ночи во время сна. Гликоген в основном хранится в мышцах и печени.

Углеводы помогают сохранить мышцы

Получение достаточного количества углеводов с пищей сохраняет ваши мышцы. Когда глюкоза сразу недоступна, а запасы углеводов истощены, организм расщепляет белок в мышечных волокнах, чтобы преобразовать его в глюкозу в процессе, известном как глюконеогенез. Хотя это помогает удовлетворить ваши потребности в топливе, это не лучший способ получения глюкозы для организма. Если вы возьмете за привычку слишком сильно экономить на углеводах, то недостаток топлива в мышцах может снизить мышечную массу.

Carbs Fuel Exercise Performance

Ваши мышцы накапливают гликоген, чтобы обеспечить вас топливом во время продолжительных упражнений. Когда вы начинаете двигаться и прорабатывать мышцы, например, в течение 30 минут упражнений средней интенсивности, запасы гликогена подпитывают ваши мышцы, чтобы вы могли работать оптимально. Катаетесь ли вы на велосипеде, бегаете или просто быстро ходите, вашим мышцам нужна энергия, чтобы они могли работать. Спортсмены на выносливость обычно загружают углеводы за несколько дней до соревнований, чтобы максимизировать запасы гликогена в мышцах.Роль углеводов в выполнении упражнений хорошо известна и может быть использована в ваших интересах.

Выбор здоровых углеводов

Несмотря на то, что ваше тело превращает все углеводы в глюкозу, тип углеводов, которые вы едите, жизненно важен для вашего здоровья. Получение слишком большого количества углеводов из добавленных сахаров вредно, и вы, вероятно, потребляете больше, чем думаете. Сахар добавляется в большинство упакованных продуктов, даже в те, которые вы не считаете сладкими, например в приправы и хлеб.

Лучше всего получать большую часть углеводов из фруктов, овощей и продуктов с высоким содержанием клетчатки, например цельного зерна.Стремитесь, чтобы потребление добавленного сахара не превышало 100 калорий для женщин и 150 калорий или меньше для мужчин.

III. Углеводы, структура и типы — Руководство по принципам питания животных

В этой главе представлены введение и обсуждение углеводов, которые важны для питания сельскохозяйственных животных.

Новые термины
Амилопектин
Амилоза
Целлюлоза
Дисахарид
Фруктоза
Галактоза
Глюкоза
Гликоген
Гетерополисахарид
Гомополисахарид
Моносахарид
9288 Стадисахарид 9288

Цели отдела

  • Представить химическую структуру различных типов углеводов и их важность в питании животных

Углеводы

Что такое углеводы?

Углеводы — основные компоненты растительной ткани, составляющие от 60% до 90% сухого вещества (СВ).Углеводы содержат углерод, водород и кислород в той пропорции, которая содержится в воде (CH 2 O) и, следовательно, являются гидратами углерода. Углеводы — основной источник энергии в клетках животных. Углеводы, получаемые из продуктов растительного происхождения, служат основным источником энергии для животных. Хлорофилл в растительных клетках улавливает солнечную энергию и производит углеводы, используя углекислый газ и воду, и выделяет кислород, как показано в следующем уравнении:

солнечная энергия + 6 CO2 + 6 ч30 → C6h3O + 6 O2.

Углеводы являются основным источником энергии для животных.

В клетке растения углеводы могут присутствовать в содержимом клетки в виде сахара или крахмала, или они могут быть связаны со структурой клеточной стенки (например, целлюлозой). Когда животные едят растительные материалы (например, злаки, траву, корм), энергия углеводов корма становится доступной через метаболические процессы в животной клетке. В целом метаболизм животных производит энергию в процессе, обратном процессу фотосинтеза.

Метаболизм животных производит энергию в процессе, обратном фотосинтезу растений.

Структура и классификация

Один из методов классификации углеводов основан на количестве атомов углерода на каждую молекулу углевода и на количестве молекул сахара в соединении. По количеству атомов углерода углевод можно разделить на триозу (3 C), тетрозу (4 C), пентозу (5 C) и гексозу (6 C). Суффикс « ose » в конце биохимического названия обозначает молекулу как «сахар».Среди них пентозы (например, рибоза в рибонуклеиновой кислоте (РНК)) и гексозы (например, глюкоза или сахар в крови) являются наиболее распространенными сахарами в тканях животных. Основываясь на количестве молекул сахара в соединении, углеводы можно классифицировать как (1) моносахарид, одна единица сахара; (2) дисахарид, два моносахарида; (3) олигосахариды, от трех до пятнадцати моносахаридов; и (4) полисахариды, крупные полимеры простых сахаров.

A. Моносахариды часто называют простыми сахарами (например,g., глюкоза) и не может быть гидролизована до более простых соединений.

Моносахариды можно подразделить на основе количества атомов углерода (C). В следующем списке показаны префиксы для количества атомов углерода в сахаре.

  1. Триоза (3 C)
  2. Тетроза (4 C)
  3. Пентоза (5 C; например, ксилоза и рибоза)
  4. Гексоза (6 C; например, глюкоза, фруктоза, галактоза и манноза)

Моносахариды — это простейшие формы углеводов.

Большинство моносахаридов в тканях животных состоит из сахаров 5C и 6C.Простые сахара также подразделяются на альдозу, сахар, содержащий альдегидную структуру, или кетозу, сахар, содержащий кетоновую группу. И глюкоза, и фруктоза имеют одинаковую молекулярную формулу C6h22O6 и представляют собой гексозы (6 C). Но глюкоза — это альдоза (также называемая альдогексозой), а фруктоза — это кетоза или кетогексоза.

Три гексозы, которые важны с точки зрения питания и метаболизма, — это глюкоза, фруктоза и галактоза (см. Рис. 3.1).

Рисунок 3.1. Структура простых сахаров (Источник: Википедия)

Наиболее важными в питании сахарами являются пентозы или гексозы.

Химическая структура глюкозы может быть представлена ​​как в форме прямой цепи (рис. 3.1), так и в циклической форме (также показанной на рис. 3.1). В биологической системе глюкоза существует в основном в циклической форме и очень редко в прямой форме (в водном растворе). Глюкоза — это форма углеводов, содержащихся в циркулирующей крови (сахар в крови), и основной углевод, используемый организмом для производства энергии. Фруктоза, или «фруктовый сахар», содержится в созревших фруктах и ​​меде, а также образуется при переваривании дисахарида сахарозы.Галактоза содержится в молоке млекопитающих вместе с дисахаридной лактозой и выделяется во время пищеварения.

Глюкоза может существовать в виде α- и β-изомеров и имеет огромное значение для питания животных. Эти два изомера различаются ориентацией ОН на C # 1 (показано красным на рисунке 3.2).

Рисунок 3.2. Структура альфа- и бета-глюкозы Источник: Wikipedia

Например, крахмал содержит α-D-глюкозу, а целлюлоза — жесткие полимеры с β-D-глюкозой. Важные для питания сахара имеют D-форму (не L-форму).D и L относятся к стереоориентации в асимметричном углеродном положении 5 в гексозе или углеродном положении 4 в пентозе.

Сахара, важные для питания, имеют D-форму.

B. Дисахариды состоят из двух моносахаридов, связанных гликозидной (ковалентной) связью. Ниже приведены некоторые из распространенных дисахаридов:

  1. Сахароза-глюкоза + фруктоза (например, столовый сахар)
  2. Лактоза-глюкоза + галактоза (молочный сахар)
  3. Мальтоза-α-D-глюкоза + β-D-глюкоза (солодовый сахар)
  4. Целлобиоза-β-D-глюкоза + β-D-глюкоза (целлюлоза)

Среди различных дисахаридов лактоза (молочный сахар) является единственным углеводом животного происхождения.Однако целлобиоза как компонент целлюлозы важна в питании животных. Животные с однокамерным желудком не могут переваривать целлюлозу, потому что они не производят фермент целлюлазу, который может расщеплять β-D-глюкозу.

Рисунок 3.3. Важные дисахариды в питании и кормлении животных, лактоза и целлобиоза. Источник: Wikipedia

C. Олигосахариды получают путем связывания трех или более (от 3 до 15) моносахаридов, связанных вместе.

  1. Рафиноза (глюкоза + фруктоза + галактоза; 3 сахара)
  2. Стахиоза (глюкоза + фруктоза + 2 галактозы; 4 сахара)

В рационах животных олигосахариды обычно содержатся в фасоли и бобовых.Некоторые олигосахариды используются как вещества, способствующие росту хороших микробов (пребиотики). В последнее время возрос интерес к использованию различных олигосахаридов в качестве кормовых добавок для улучшения здоровья кишечника (например, фруктоолигосахаридов, олигосахаридов маннана).

D. Полисахариды, как следует из их названия, получают путем соединения крупных полимеров простых сахаров.

Полисахариды — самый важный углевод в кормах для животных.Полисахариды состоят из множества отдельных моносахаридных единиц, связанных вместе в длинные сложные цепи. Функции полисахаридов включают накопление энергии в растительных клетках (например, крахмал семян в зерновых культурах) и животных клетках (например, гликоген) или структурную поддержку (растительные волокна). Компоненты структуры клеточной стенки в корме для животных также называют некрахмальными полисахаридами или резистентным крахмалом, поскольку они не перевариваются животными ферментами, а ферментируются микробами задней кишки и рубца.

Полисахариды могут быть гомополисахаридами или гетерополисахаридами.

  • а. Гомополисахарид
  • г. Гетерополисахарид

а. Гомополисахарид: Содержит только один тип сахаридной единицы.

Примеры гомополисахаридов, которые важны для питания животных, включают крахмал (неструктурная форма), гликоген (животная форма) и целлюлоза (структурная форма растения).

  1. Крахмал: Основная сахарная форма углевода в зерновых злаках (запасание энергии в семенах). Базовая единица — α-D-глюкоза.Формы крахмала в зернах злаков включают:
    1. Амилоза-α 1,4-связанная прямая цепь, неразветвленная, спиральная структура
    2. Связь амилопектина-α 1,4 с связью альфа 1,6 в точках ветвления

Амилоза — простейший из полисахаридов, состоящий исключительно из единиц глюкозы, соединенных альфа-1,4-связью (рис. 3.4). Амилоза растворима в воде и составляет от 15% до 30% от общего количества крахмала в большинстве растений.

Рисунок 3.4. Структура амилозы, показывающая прямую связь α 1,4 Источник: Википедия

Амилопектин отличается тем, как единицы глюкозы соединены вместе. Преобладают связи альфа 1,4, но «ветвь» возникает из связи альфа 1,6. Такие ответвления делают структуру амилопектина более сложной, чем у амилозы. Амилопектин не растворяется в воде и составляет от 70% до 85% всего крахмала в растительных клетках.

Крахмал — главный источник углеводов в рационе животных с однокамерным желудком.

Амилопектин — основная форма крахмала в растительных клетках.

Рисунок 3.5. Структура амилопектина, показывающая прямую связь α 1,6 Источник: Википедия

Гликоген — это форма крахмала, содержащаяся в тканях животных, поэтому ее называют животным крахмалом. Гликоген — это полисахарид, который физически связан с амилопектином с основной альфа-D-глюкозой, но имеет смесь связей α 1,4 и α 1,6. Гликоген присутствует в небольшом количестве (<1%) в печени и мышечной ткани.

Целлюлоза — самый распространенный в природе углевод.Он обеспечивает структурную целостность стенок растительных клеток. Базовая единица — связь β 1,4, прямая цепь, неразветвленная (рис. 3.3). Целлюлоза очень устойчива. Ни один животный фермент не может его сломать; только микробная целлюлаза может его разрушить. Однако у жвачных животных, таких как крупный рогатый скот, в рубце есть бактерии, содержащие фермент целлюлазу. Он разрушает бета-1,4-звенья глюкозы в целлюлозе, чтобы высвободить сахар для получения энергии.

b: Гетерополисахарид: компонент стенок растительных клеток, содержащий смесь сахаров 5C и 6C (e.g., гемицеллюлоза и пектин, смесь пентозных и гексозных единиц).

Рисунок 3.7. Структура гетерополисахарида, представляющая смесь сахаров 6 и 5 C Источник: Википедия

Ключевые точки

  1. Углеводы представляют собой «гидраты углерода» и имеют общую структуру C (n) H (2n) O (n).
  2. Одна единица сахара — это моносахарид. Они могут состоять из 3-углеродных фрагментов (триоза), 4-углеродных фрагментов (тетроза), 5-углеродных фрагментов (пентоза) и 6-углеродных фрагментов (гексоза).
  3. Наиболее важными в питании сахарами являются пентозы или гексозы.
  4. Дальнейшая классификация сахаров представляет собой определение либо альдозы (имеющей альдегидную группу), либо кетозы (имеющей кетонную группу). Глюкоза, манноза и галактоза — это альдозы, а фруктоза — кетоза.
  5. Питательно важные сахара имеют D-форму (не L-форму). D и L относятся к стереоориентации в асимметричном углеродном положении 5 в гексозе или углеродном положении 4 в пентозе.
  6. Сахара соединяются гликозидной связью с образованием ди- (два моносахарида) или олиго- (от 3 до 15 моносахаридов) и полисахаридов.
  7. Природа гликозидных связей влияет на структурные и химические свойства сахаров и влияет на их легкость переваривания. Сахара, которые связываются через альфа-1,4-связь, могут перевариваться ферментами млекопитающих. Сахара, связанные бета-1,4-связью, устойчивы к перевариванию.
  8. Диетически важные дисахариды — это сахароза и лактоза.
  9. Крахмал из растений служит основным источником энергии в рационе животных. Крахмал состоит из двух типов молекул: амилозы (1,4-связанная альфа-глюкоза) и амилопектина (1,4- и альфа-1,6-связанная глюкоза).
  10. Гликоген, форма хранения углеводов в печени и мышцах, очень похож на крахмал, также называемый животным крахмалом.
  11. Растительные полисахариды также включают целлюлозу, гемицеллюлозу и пектин (некрахмальные полисахариды). Ферменты млекопитающих не могут расщеплять эти полисахариды до свободных сахаров, но микробные ферменты могут справиться с ними.

Контрольные вопросы

  1. Чем принципиально различаются крахмал и целлюлоза?
  2. Какие дисахариды имеют пищевое значение?
  3. Важные для питания сахара имеют D-форму или L-форму?
  4. Самый важный сахар в питании
  5. Перечислите две формы, в которых существует крахмал
  6. Формы крахмала в организме животного есть?
  7. Структурный гомополисахарид, состоящий из глюкозы, представляет собой
    1. целлюлоза
    2. гемицеллюлоза
    3. пектин
    4. рафиноза
  8. Среди этих различных сахаров основным источником энергии для цыплят-бройлеров является
    1. фруктоза
    2. сахароза
    3. гликоген
    4. глюкоза
  9. Две молекулы сахара связаны между собой этой связью
    1. пептическая связка
    2. гликозидная связь
    3. диглицеридная связь
    4. и а) и б)
  10. Среди двух форм крахмала это основной компонент зерновых культур.
    1. амилоза
    2. амилопектин
    3. целлюлоза
    4. гликоген

3 Углеводы и клетчатка | Потребности в питательных веществах нечеловеческих приматов: второе пересмотренное издание

Паулини, И., Т. Мехта и А. Харгис. 1987. Изменения структуры кишечника у африканских зеленых мартышек после длительного кормления псиллиумом или целлюлозой. J. Nutr. 117: 253-266.

Пичард Г. и П. Ван Сост. 1977. Растворимость белков кормов для жвачных животных. Стр. 91-98 в Proc. Cornell Nutr. Конф. Итака, Нью-Йорк: Корнельский университет.

Попович Д.Г., Диренфельд Э.С. 1997. Питание. в «Управление горилл в неволе: руководство по животноводству», «План выживания видов горилл», J. Ogden and D. Wharton, Eds.Являюсь. Доц. Zoos Aquar.

Попович Д.Г., Д.Дж.А. Дженкинс, C.W.C. Кендалл, Э. Диренфельд, Р. В. Кэрролл, Н. Тарик и Э. Видген. 1997. Рацион западных низинных горилл имеет значение для здоровья людей и других гоминоидов. J. Nutr. 127: 2000-2005.

Пауэр, M.L. и O.T. Офтедал. 1996. Различия среди содержащихся в неволе каллитрихидов в пищеварительной реакции на пищу жевательной резинки. Являюсь. J. Primatol. 40: 131-144.

Проский, Л., Н-Г. Asp, I. Furda, I., J.H. Деврис, Т.Ф. Швейцер и Б. Ф. Харланд. 1985. Определение общего количества пищевых волокон в пищевых продуктах и ​​пищевых продуктах: совместное исследование. J. Assoc. Выключенный. Анальный. Chem. 68: 677-679.

Reiser, S., D.E. Михаэлис, Дж. Патни и Дж. Холлфриш. 1975. Влияние кормления сахарозой на транспорт сахаров в кишечнике у двух линий крыс. J. Nutr. 105: 894-905.

Робертсон, Дж. Б. и П. Дж. Хорват. 1992. Моющий анализ пищевых продуктов. Стр. 49-52 в Справочнике CRC по диетической клетчатке в питании человека, 2 nd ed., Г.А. Spiller, Ed. Бока-Ратон: CRC Press.

Робертсон, Дж. Б. и П. Дж. Ван Суст. 1981. Система анализа детергентов и ее применение в пищевых продуктах. Стр. 123-158 в разделе «Анализ пищевых волокон в продуктах питания», W.P.T. Джеймс и О. Теандр, ред. Нью-Йорк, Нью-Йорк: Марсель Деккер.

Роджерс, M.E., F. Maisels, E.A. Уильямсон, М. Фернандес и C.E.G. Тутин. 1990. Рацион горилл в заповеднике Лопе, Габон: анализ питания. Oecol. 84: 326-339.

Rylands, A.B.1993. Экология тамаринов льва, Leontopithecus : некоторые внутриродовые различия и сравнения с другими каллитрихидами. Стр. 296–313 в «Мартышки и тамарины: систематика, поведение и экология», A.B. Рилэндс, Эд. Нью-Йорк: Издательство Оксфордского университета.

Райлендс, А.Б., Д.С. де Фариа. 1993. Среда обитания, экология кормления и размер ареала обитания представителей рода C allithrix . Стр. 262–272 в «Мартышки и тамарины: систематика, поведение и экология», А. Рилэндс, Эд.Нью-Йорк: Издательство Оксфордского университета.

Ryttig, K.R., A.R. Лидс и С. Рёсснер. 1990. Пищевые волокна в борьбе с избыточным весом. Стр. 87-100 в книге «Перспективы диетических волокон — обзоры и библиография», Vol. 2, А. Лидс, Эд. Лондон: John Libbey & Co., Ltd.

Sachslehner, A., G. Foidl, N. Foidl, G. Gubitz, and D. Haltrich. 2000. Гидролиз изолированного кофейного маннана и кофейного экстракта маннаназами Sclerotium rolfsii . J. Biotech. 80: 127-134.

Э. Сакагути, К. Судзуки, С. Котера, А. Эхара. 1991. Переваривание клетчатки и время удерживания перевариваемого вещества у макак и колобусов. Стр. 671-674 в приматологии сегодня. Лондон: Elsevier Science Publ.

Салли, Дж. Дж. И У. Ф. Брайсон. 1957. Дефицит витамина А у хомяка. J. Dent. Res. 36: 935-944.

Salyers, A.A., J.R. Vercellotti, S.E.H. Уэст и Т.Д. Уилкинс. 1977 г. Ферментация муцина и растительных плойсахаридов штаммами Bacteroides из толстой кишки человека.Прил. Environ. Microbiol. 33: 319-322.

Шацкин, А., Э. Ланца, Д. Корл, П. Ланс, Ф. Ибер, Б. Каан, М. Шике, Дж. Вайсфельд, Р. Берт, М. Р. Купер, Дж. У. Кикендалл и Дж. Кэхилл. 2000. Отсутствие влияния диеты с низким содержанием жиров и высоким содержанием клетчатки на рецидивы колоректальных аденом. Исследовательская группа по профилактике полипов. N.E. J. Med. 20: 1149-1155.

Schneeman, B.O. 1990. Поглощение макроэлементов. Стр. 157–166 в «Пищевые волокна: химия, физиология и влияние на здоровье», Д. Кричевский, К.Бонфилд и Дж. Андерсон, ред. Нью-Йорк: Пленум Пресс.

Смит, Д. 1969. Удаление и анализ общих неструктурных углеводов из растительной ткани. College Agr. & Life Sci. Res. Rep. # 41, Univ. Висконсин, Мэдисон.

Саутгейт, Д.А.Т. и Х. Энглист. 1985. Пищевые волокна: химия, физические свойства и анализ. Стр. 31-55 в «Диетическая клетчатка, продукты с низким содержанием клетчатки и болезни», H. Trowell, D. Burkitt и K. Heaton, Eds. Лондон: Academic Press.

Спиллер, Г.А. 1992. Определение пищевых волокон. Стр. 15-18 в Справочнике CRC по диетической клетчатке в питании человека, 2 nd ed., G.A. Spiller, Ed. Бока-Ратон: CRC Press.

Стивен А. 1985. Запор. Стр. 133–144 в «Диетическая клетчатка, продукты с низким содержанием клетчатки и болезни», H. Trowell, D. Burkitt и K. Heaton, Eds. Лондон: Academic Press.

Стивен А.М. и Дж. Х. Каммингс. 1980. Механизм действия пищевых волокон в толстой кишке человека. Nature 284: 283-284.

Стерлинг, Э.J., E.S. Диренфельд, К.Дж. Эшборн и A.T.C. Файстнер. 1994. Рацион питания, состав пищи и потребление питательных веществ в диких и содержащихся в неволе популяциях Daubentonia madagascariensis . Folia Primatol. 62: 1-3, 115-124.

Стивенс, Б.Дж.Х., Р.Р. Селвендран, К.Е. Бейлисс и Р. Тернер. 1988. Разложение материала клеточной стенки яблочных и пшеничных отрубей фекальными бактериями человека in vitro. J. Sci. Food Agri. 44: 151-166.

Стивенс, C.E., and I.D. Юм. 1995. Сравнительная физиология пищеварительной системы позвоночных, 2 nd изд.Нью-Йорк, штат Нью-Йорк: Cambridge Univ. Нажмите.

Streett, J.W., and A.M. Йонас. 1980. Непереносимость лактозы у длиннохвостой макаки ( Macaca arctoides ) — отчет о клиническом случае. Лаборатория. Anim. Sci. 30: 1: 80-84.

Сугано, М. И Икеда, К. Имаидзуми, Я.-Ф. Лу. 1990. Пищевые волокна и абсорбция липидов. Стр. 137-156 в «Пищевые волокна: химия, физиология и влияние на здоровье», Д. Кричевский, К. Бонфилд и Дж. У. Андерсон, ред. Нью-Йорк: Пленум Пресс.

Szepesi, B. 1996.Углеводы. Стр. 33-43 в Present Knowledge in Nutrition, 7 th ed., E.E. Ziegler and L.J. Filer, Jr., Eds. Вашингтон, округ Колумбия: Междунар. Life Sci. Inst. Нажмите.

Taiz, L., and E. Zeiger. 1998. Физиология растений, 2 nd изд. Сандерленд, Массачусетс: Sinauer Assoc., Inc.

Trowell, H. 1990. Пищевые продукты с обедненным клетчаткой крахмалом и NIDDMdiabetes. Стр. 283–286 в «Пищевые волокна: химия, физиология и влияние на здоровье», Д. Кричевский, К. Бонфилд и Дж. У. Андерсон, ред.Нью-Йорк: Пленум Пресс.

Van Soest, P.J. 1994. Экология питания жвачных животных, 2 nd ed. Итака, Нью-Йорк: Cornell Univ. Нажмите.

Ван Суст, П.Дж., Дж. Б. Робертсон и Б.А. Льюис. 1991. Способы получения пищевых волокон, нейтральных детергентных волокон и некрахмальных полисахаридов в отношении питания животных. J. Dairy Sci. 74: 3583-3597.

Vellayan, S. 1981. Химический состав и усвояемость натуральных и домашних продуктов питания Lar gibbon ( Hylobates lar ) в Малайзии.M. Sc. Диссертация, Univ. Pertanian, Malaysia (Serdang), цитируется Davies, A.G., J.O. Калдекотт, Д.Дж. Чиверс. 1983. Натуральные продукты как руководство по питанию приматов Старого Света. Стандарты обращения с лабораторными животными. Совместный симпозиум UFAW / LASA, Лондон.

Vonk, H.J. and J.R.H. Западный. 1984. Сравнительная биохимия и физиология ферментативного пищеварения. Academic Press, Лондон. 501 с.

Уотерман, П.Г. и Г.М. Чух. 1981. Влияние веществ, снижающих усвояемость, в листьях на выбор пищи некоторыми Colobinae.Малайзия. Прил. Биол. 10: 147-162.

Уотерман, П.Г., и К.М. Kool. 1994. Выбор пищевых продуктов колобина и химия растений. Стр. 251-284 в Colobine Monkeys: их экология, поведение и эволюция, A.G. Davies and J.F. Oates, Eds. Кембридж, Массачусетс: Издательство Кембриджского университета.

Уоткинс, B.E., D.E. Уллри, П.А. Уеттер. 1985. Усвояемость диеты на основе печенья с высоким содержанием клетчатки для черных и белых колобусов ( Colobus guereza ). Являюсь. J. Primatol. 9: 137-144.

2.3 биологические молекулы — концепции биологии — 1-е канадское издание

К концу этого раздела вы сможете:

  • Опишите, почему углерод имеет решающее значение для жизни
  • Объясните влияние незначительных изменений аминокислот на организмы
  • Опишите четыре основных типа биологических молекул
  • Понимать функции четырех основных типов молекул

Посмотрите видео о белках и белковых ферментах.

Необходимые для жизни большие молекулы, состоящие из более мелких органических молекул, называются биологическими макромолекулами . Существует четыре основных класса биологических макромолекул (углеводы, липиды, белки и нуклеиновые кислоты), каждый из которых является важным компонентом клетки и выполняет широкий спектр функций. Вместе эти молекулы составляют большую часть массы клетки. Биологические макромолекулы являются органическими, что означает, что они содержат углерод. Кроме того, они могут содержать водород, кислород, азот, фосфор, серу и дополнительные второстепенные элементы.

Часто говорят, что жизнь «основана на углероде». Это означает, что атомы углерода, связанные с другими атомами углерода или другими элементами, образуют фундаментальные компоненты многих, если не большинства, молекул, уникальных для живых существ. Другие элементы играют важную роль в биологических молекулах, но углерод определенно квалифицируется как элемент «фундамент» для молекул в живых существах. Это связывающие свойства атомов углерода, которые ответственны за его важную роль.

Углерод содержит четыре электрона в своей внешней оболочке.Следовательно, он может образовывать четыре ковалентные связи с другими атомами или молекулами. Простейшая молекула органического углерода — метан (CH 4 ), в котором четыре атома водорода связаны с атомом углерода.

Рис. 2.12. Углерод может образовывать четыре ковалентные связи, образуя органическую молекулу. Самая простая молекула углерода — это метан (Ch5), изображенный здесь.

Однако более сложные конструкции изготавливаются с использованием углерода. Любой из атомов водорода можно заменить другим атомом углерода, ковалентно связанным с первым атомом углерода.Таким образом могут быть образованы длинные и разветвленные цепи углеродных соединений (рис. 2.13 a ). Атомы углерода могут связываться с атомами других элементов, таких как азот, кислород и фосфор (рис. 2.13 b ). Молекулы также могут образовывать кольца, которые сами могут связываться с другими кольцами (рис. 2.13 c ). Это разнообразие молекулярных форм объясняет разнообразие функций биологических макромолекул и в значительной степени основано на способности углерода образовывать множественные связи с самим собой и другими атомами.

Рис. 2.13. Эти примеры показывают три молекулы (обнаруженные в живых организмах), которые содержат атомы углерода, различным образом связанные с другими атомами углерода и атомами других элементов. (а) Эта молекула стеариновой кислоты имеет длинную цепочку атомов углерода. (б) Глицин, компонент белков, содержит атомы углерода, азота, кислорода и водорода. (c) Глюкоза, сахар, имеет кольцо из атомов углерода и один атом кислорода.

Углеводы — это макромолекулы, с которыми большинство потребителей в некоторой степени знакомо.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружаются углеводами» перед важными соревнованиями, чтобы убедиться, что у них достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар. Углеводы также выполняют другие важные функции у людей, животных и растений.

Углеводы могут быть представлены формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза.В моносахаридах количество атомов углерода обычно составляет от трех до шести. Большинство названий моносахаридов оканчиваются суффиксом -ose. В зависимости от количества атомов углерода в сахаре они могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и гексозы (шесть атомов углерода).

Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевой форме.

Химическая формула глюкозы: C 6 H 12 O 6 .У большинства живых существ глюкоза является важным источником энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду в процессе фотосинтеза, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыток синтезированной глюкозы часто хранится в виде крахмала, который расщепляется другими организмами, которые питаются растениями.

Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и известны как изомеры) из-за разного расположения атомов в углеродной цепи. .

Рис. 2.14. Глюкоза, галактоза и фруктоза — изомерные моносахариды, что означает, что они имеют одинаковую химическую формулу, но немного разные структуры.

Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (реакции, при которой происходит удаление молекулы воды).Во время этого процесса гидроксильная группа (–ОН) одного моносахарида соединяется с атомом водорода другого моносахарида, высвобождая молекулу воды (H 2 O) и образуя ковалентную связь между атомами в двух молекулах сахара.

Общие дисахариды включают лактозу, мальтозу и сахарозу. Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

Длинная цепь моносахаридов, связанных ковалентными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Полисахариды могут быть очень большими молекулами. Крахмал, гликоген, целлюлоза и хитин являются примерами полисахаридов.

Крахмал — это хранимая в растениях форма сахаров, состоящая из амилозы и амилопектина (оба полимера глюкозы).Растения способны синтезировать глюкозу, а избыток глюкозы откладывается в виде крахмала в различных частях растений, включая корни и семена. Крахмал, который потребляется животными, расщепляется на более мелкие молекулы, такие как глюкоза. Затем клетки могут поглощать глюкозу.

Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц.Когда уровень глюкозы снижается, гликоген расщепляется с высвобождением глюкозы.

Целлюлоза — один из самых распространенных природных биополимеров. Клеточные стенки растений в основном состоят из целлюлозы, которая обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны связями между определенными атомами углерода в молекуле глюкозы.

Каждый второй мономер глюкозы в целлюлозе переворачивается и плотно упаковывается в виде вытянутых длинных цепей.Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Целлюлоза, проходящая через нашу пищеварительную систему, называется пищевыми волокнами. Хотя связи глюкозы и глюкозы в целлюлозе не могут быть разрушены пищеварительными ферментами человека, травоядные животные, такие как коровы, буйволы и лошади, способны переваривать траву, богатую целлюлозой, и использовать ее в качестве источника пищи. У этих животных определенные виды бактерий обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу.В аппендиксе также содержатся бактерии, которые расщепляют целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии.

Углеводы выполняют другие функции у разных животных. У членистоногих, таких как насекомые, пауки и крабы, есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела. Этот экзоскелет состоит из биологической макромолекулы , хитина , азотистого углевода.Он состоит из повторяющихся единиц модифицированного сахара, содержащего азот.

Таким образом, из-за различий в молекулярной структуре углеводы могут выполнять самые разные функции хранения энергии (крахмал и гликоген), а также структурной поддержки и защиты (целлюлоза и хитин).

Рис. 2.15. Хотя их структура и функции различаются, все полисахаридные углеводы состоят из моносахаридов и имеют химическую формулу (Ch3O) n.

Зарегистрированный диетолог: ожирение является проблемой для здоровья во всем мире, и многие болезни, такие как диабет и болезни сердца, становятся все более распространенными из-за ожирения.Это одна из причин, почему к зарегистрированным диетологам все чаще обращаются за советом. Зарегистрированные диетологи помогают планировать пищевые продукты и программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для профилактики и лечения заболеваний. Например, диетологи могут научить пациента с диабетом, как контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов. Диетологи также могут работать в домах престарелых, школах и частных клиниках.

Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, дипломированные диетологи должны пройти программу стажировки под руководством и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в химии и функциях пищи (белков, углеводов и жиров).

Через призму коренных народов (Сюзанна Вилкерсон и Чарльз Мольнар)

Я работаю в колледже Камосун, расположенном в красивой Виктории, Британская Колумбия, с кампусами на традиционных территориях народов леквунгенов и васаней. Подземная луковица для хранения цветка камас, показанная ниже, была важным источником пищи для многих коренных народов острова Ванкувер и всей западной части Северной Америки. Луковицы камас по-прежнему употребляются в пищу как традиционный источник пищи, и приготовление луковиц камас относится к этому текстовому разделу об углеводах.

Рисунок 2.16 Изображение синего цветка камас и насекомого-опылителя. Подземная лампочка камаса запекается в костре. Тепло действует как фермент панкреатическая амилаза и расщепляет длинные цепи неперевариваемого инулина на усвояемые моно- и дисахариды.

Чаще всего растения вырабатывают крахмал как запасенную форму углеводов. Некоторые растения, например камас, создают инулин. Инулин используется в качестве пищевых волокон, однако он не усваивается людьми. Если бы вы откусили сырую луковицу камаса, она была бы горькой и имела липкую консистенцию.Метод, используемый коренными народами для того, чтобы сделать камас одновременно удобоваримым и вкусным, заключается в медленном запекании луковиц в течение длительного периода в подземной чаше для костра, покрытой особыми листьями и почвой. Тепло действует как фермент амилаза поджелудочной железы и расщепляет длинные цепи инулина на легкоусвояемые моно- и дисахариды.

Правильно запеченные луковицы камас по вкусу напоминают сочетание печеной груши и вареного инжира. Важно отметить, что, хотя синие камы являются источником пищи, их не следует путать с белыми камасами смерти, которые особенно токсичны и смертельны.Цветки выглядят по-разному, но луковицы очень похожи.

Липиды включают разнообразную группу соединений, объединенных общим признаком. Липиды являются гидрофобными («водобоязненными») или нерастворимыми в воде, поскольку они являются неполярными молекулами. Это потому, что они являются углеводородами, которые включают только неполярные углерод-углеродные или углерод-водородные связи. Липиды выполняют в клетке множество различных функций. Клетки накапливают энергию для длительного использования в виде липидов, называемых жирами .Липиды также обеспечивают изоляцию растений и животных от окружающей среды. Например, они помогают водным птицам и млекопитающим оставаться сухими из-за их водоотталкивающих свойств. Липиды также являются строительными блоками многих гормонов и являются важной составляющей плазматической мембраны. Липиды включают жиры, масла, воски, фосфолипиды и стероиды.

Рис. 2.17. Гидрофобные липиды в мехе водных млекопитающих, таких как речная выдра, защищают их от непогоды.

Молекула жира, такая как триглицерид, состоит из двух основных компонентов — глицерина и жирных кислот.Глицерин — это органическое соединение с тремя атомами углерода, пятью атомами водорода и тремя гидроксильными (–OH) группами. Жирные кислоты имеют длинную цепь углеводородов, к которой присоединена кислая карбоксильная группа, отсюда и название «жирная кислота». Количество атомов углерода в жирной кислоте может составлять от 4 до 36; наиболее распространены те, которые содержат 12–18 атомов углерода. В молекуле жира жирная кислота присоединена к каждому из трех атомов кислорода в -ОН-группах молекулы глицерина ковалентной связью.

Фигура 2.18 Липиды включают жиры, такие как триглицериды, которые состоят из жирных кислот и глицерина, фосфолипидов и стероидов.

Во время образования этой ковалентной связи высвобождаются три молекулы воды. Три жирные кислоты в жире могут быть похожими или разными. Эти жиры также называют триглицеридами , потому что они содержат три жирные кислоты. Некоторые жирные кислоты имеют общие названия, указывающие на их происхождение. Например, пальмитиновая кислота, насыщенная жирная кислота, получают из пальмы.Арахидовая кислота получена из Arachis hypogaea , научного названия арахиса.

Жирные кислоты могут быть насыщенными и ненасыщенными. В цепи жирной кислоты, если есть только одинарные связи между соседними атомами углерода в углеводородной цепи, жирная кислота является насыщенной. Насыщенные жирные кислоты насыщены водородом; другими словами, количество атомов водорода, прикрепленных к углеродному скелету, максимально.

Когда углеводородная цепь содержит двойную связь, жирная кислота представляет собой ненасыщенную жирную кислоту .

Большинство ненасыщенных жиров являются жидкими при комнатной температуре и называются маслами . Если в молекуле есть одна двойная связь, то он известен как мононенасыщенный жир (например, оливковое масло), а если имеется более одной двойной связи, то он известен как полиненасыщенный жир (например, масло канолы).

Насыщенные жиры, как правило, плотно упаковываются и остаются твердыми при комнатной температуре. Животные жиры со стеариновой кислотой и пальмитиновой кислотой, содержащиеся в мясе, и жир с масляной кислотой, содержащиеся в масле, являются примерами насыщенных жиров.Млекопитающие хранят жиры в специализированных клетках, называемых адипоцитами, где жировые шарики занимают большую часть клетки. У растений жир или масло хранятся в семенах и используются в качестве источника энергии во время эмбрионального развития.

Ненасыщенные жиры или масла обычно растительного происхождения и содержат ненасыщенные жирные кислоты. Двойная связь вызывает изгиб или «перегиб», который препятствует плотной упаковке жирных кислот, сохраняя их в жидком состоянии при комнатной температуре. Оливковое масло, кукурузное масло, масло канолы и жир печени трески являются примерами ненасыщенных жиров.Ненасыщенные жиры помогают повысить уровень холестерина в крови, тогда как насыщенные жиры способствуют образованию бляшек в артериях, что увеличивает риск сердечного приступа.

В пищевой промышленности масла искусственно гидрогенизируются для придания им полутвердого состояния, что приводит к меньшей порче и увеличению срока хранения. Проще говоря, газообразный водород пропускают через масла, чтобы отвердить их. Во время этого процесса гидрирования двойные связи цис- -конформации в углеводородной цепи могут быть преобразованы в двойные связи в -транс- -конформации.Это образует транс -жир из цис--жира. Ориентация двойных связей влияет на химические свойства жира.

Рис. 2.19. В процессе гидрогенизации ориентация двойных связей меняется, в результате чего из цис-жира образуется транс-жир. Это изменяет химические свойства молекулы.

Маргарин, некоторые виды арахисового масла и шортенинг являются примерами искусственно гидрогенизированных транс -жиров. Недавние исследования показали, что увеличение транс--жиров в рационе человека может привести к увеличению уровня липопротеинов низкой плотности (ЛПНП) или «плохого» холестерина, что, в свою очередь, может привести к отложению бляшек в организме человека. артерии, что приводит к болезни сердца.Многие рестораны быстрого питания недавно отказались от использования транс--жиров, и теперь в США на этикетках продуктов питания требуется указывать содержание в них -транс--жиров.

Незаменимые жирные кислоты — это жирные кислоты, которые необходимы, но не синтезируются человеческим организмом. Следовательно, их необходимо дополнять с помощью диеты. Омега-3 жирные кислоты попадают в эту категорию и являются одной из двух известных незаменимых жирных кислот для человека (другая — омега-6 жирные кислоты).Они представляют собой тип полиненасыщенных жиров и называются омега-3 жирными кислотами, потому что третий углерод на конце жирной кислоты участвует в двойной связи.

Лосось, форель и тунец являются хорошими источниками жирных кислот омега-3. Жирные кислоты омега-3 важны для работы мозга, нормального роста и развития. Они также могут предотвратить сердечные заболевания и снизить риск рака.

Как и углеводы, жиры получили широкую огласку. Это правда, что чрезмерное употребление жареной и другой «жирной» пищи приводит к увеличению веса.Однако жиры выполняют важные функции. Жиры служат долгосрочным накопителем энергии. Они также обеспечивают изоляцию тела. Поэтому «здоровые» ненасыщенные жиры в умеренных количествах следует употреблять регулярно.

Фосфолипиды являются основным компонентом плазматической мембраны. Как и жиры, они состоят из цепей жирных кислот, прикрепленных к глицерину или подобной основной цепи. Однако вместо трех жирных кислот есть две жирные кислоты, а третий углерод глицериновой цепи связан с фосфатной группой.Фосфатная группа модифицируется добавлением спирта.

Фосфолипид имеет как гидрофобные, так и гидрофильные участки. Цепи жирных кислот гидрофобны и исключаются из воды, тогда как фосфат гидрофильный и взаимодействует с водой.

Клетки окружены мембраной, которая имеет бислой фосфолипидов. Жирные кислоты фосфолипидов обращены внутрь, вдали от воды, тогда как фосфатная группа может быть обращена либо к внешней среде, либо к внутренней части клетки, которые оба являются водными.

Через призму коренных народов

Для первых народов Тихоокеанского Северо-Запада богатый жиром рыбный оолиган с содержанием жира 20% от веса тела был важной частью рациона нескольких коренных народов. Почему? Потому что жир является наиболее калорийной пищей, и наличие компактного высококалорийного источника энергии с возможностью хранения будет важно для выживания. Характер жира также сделал его важным товаром. Как и лосось, оолиган возвращается в свое русло после долгих лет в море. Его прибытие ранней весной сделало его первым свежим продуктом в году.В цимшианских языках прибытие оолигана… традиционно объявлялось криком «Хлаа ат’иксши халимоотхв!»… Что означало: «Наш Спаситель только что прибыл!»

Рисунок 2.20 Изображение приготовленного оолигана. Эта жирная рыба с содержанием жира 20% от веса тела является важной частью диеты коренных народов.

Как вы уже узнали, все жиры гидрофобны (ненавидят воду). Чтобы отделить жир, рыбу отваривают, а плавающий жир снимают. Жировой состав улигана состоит из 30% насыщенных жиров (например, сливочного масла) и 55% мононенасыщенных жиров (например, растительных масел).Важно отметить, что это твердая смазка при комнатной температуре. Поскольку в нем мало полиненасыщенных жиров (которые быстро окисляются и портятся), его можно хранить для дальнейшего использования и использовать в качестве предмета торговли. Считается, что его состав делает его таким же полезным, как оливковое масло, или лучше, поскольку он содержит жирные кислоты омега-3, которые снижают риск диабета и инсульта. Он также богат тремя жирорастворимыми витаминами A, E и K.

Стероиды и воски

В отличие от фосфолипидов и жиров, обсуждаемых ранее, стероиды имеют кольцевую структуру.Хотя они не похожи на другие липиды, они сгруппированы с ними, потому что они также гидрофобны. Все стероиды имеют четыре связанных углеродных кольца, а некоторые из них, как и холестерин, имеют короткий хвост.

Холестерин — стероид. Холестерин в основном синтезируется в печени и является предшественником многих стероидных гормонов, таких как тестостерон и эстрадиол. Он также является предшественником витаминов Е и К. Холестерин является предшественником солей желчных кислот, которые помогают в расщеплении жиров и их последующем усвоении клетками.Хотя о холестерине часто говорят отрицательно, он необходим для правильного функционирования организма. Это ключевой компонент плазматических мембран клеток животных.

Воски состоят из углеводородной цепи со спиртовой (–OH) группой и жирной кислотой. Примеры восков животного происхождения включают пчелиный воск и ланолин. У растений также есть воск, например покрытие на листьях, которое помогает предотвратить их высыхание.

Концепция в действии

Чтобы получить дополнительную информацию о липидах, изучите «Биомолекулы: Липиды» с помощью этой интерактивной анимации.

Белки являются одними из наиболее распространенных органических молекул в живых системах и обладают самым разнообразным набором функций среди всех макромолекул. Белки могут быть структурными, регуляторными, сократительными или защитными; они могут служить для транспортировки, хранения или перепонки; или они могут быть токсинами или ферментами. Каждая клетка живой системы может содержать тысячи различных белков, каждый из которых выполняет уникальную функцию. Их структуры, как и их функции, сильно различаются. Однако все они представляют собой полимеры аминокислот, расположенных в линейной последовательности.

Функции белков очень разнообразны, потому что существует 20 различных химически различных аминокислот, которые образуют длинные цепи, и аминокислоты могут быть в любом порядке. Например, белки могут функционировать как ферменты или гормоны. Ферменты , которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно являются белками. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Ферменты могут разрушать молекулярные связи, переупорядочивать связи или образовывать новые связи.Примером фермента является амилаза слюны, которая расщепляет амилозу, компонент крахмала.

Гормоны представляют собой химические сигнальные молекулы, обычно белки или стероиды, секретируемые эндокринной железой или группой эндокринных клеток, которые действуют, чтобы контролировать или регулировать определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который поддерживает уровень глюкозы в крови.

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу.Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции или денатурации (более подробно это будет обсуждаться позже). Все белки состоят из 20 одних и тех же аминокислот по-разному.

Аминокислоты — это мономеры, из которых состоят белки.Каждая аминокислота имеет одинаковую фундаментальную структуру, которая состоит из центрального атома углерода, связанного с аминогруппой (–NH 2 ), карбоксильной группы (–COOH) и атома водорода. Каждая аминокислота также имеет другой вариабельный атом или группу атомов, связанных с центральным атомом углерода, известную как группа R. Группа R — единственное различие в структуре между 20 аминокислотами; в остальном аминокислоты идентичны.

Рис. 2.21. Аминокислоты состоят из центрального углерода, связанного с аминогруппой (–Nh3), карбоксильной группой (–COOH) и атомом водорода.Четвертая связь центрального углерода варьируется среди различных аминокислот, как видно из этих примеров аланина, валина, лизина и аспарагиновой кислоты.

Химическая природа группы R определяет химическую природу аминокислоты в ее белке (то есть, является ли она кислотной, основной, полярной или неполярной).

Последовательность и количество аминокислот в конечном итоге определяют форму, размер и функцию белка. Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации.Карбоксильная группа одной аминокислоты и аминогруппа второй аминокислоты объединяются, высвобождая молекулу воды. Полученная связь представляет собой пептидную связь.

Продукты, образованные такой связью, называются полипептидами . Хотя термины полипептид и белок иногда используются как взаимозаменяемые, полипептид технически представляет собой полимер аминокислот, тогда как термин белок используется для полипептида или полипептидов, которые объединились вместе, имеют различную форму и имеют уникальную функцию.

Эволюция в действии

Эволюционное значение цитохрома c Цитохром c является важным компонентом молекулярного механизма, который собирает энергию из глюкозы. Поскольку роль этого белка в производстве клеточной энергии имеет решающее значение, за миллионы лет он очень мало изменился. Секвенирование белков показало, что существует значительное сходство последовательностей между молекулами цитохрома с разных видов; эволюционные отношения можно оценить путем измерения сходства или различий между белковыми последовательностями различных видов.

Например, ученые определили, что цитохром с человека содержит 104 аминокислоты. Для каждой молекулы цитохрома с, которая к настоящему времени была секвенирована у разных организмов, 37 из этих аминокислот находятся в одном и том же положении в каждом цитохроме с. Это указывает на то, что все эти организмы произошли от общего предка. При сравнении последовательностей белков человека и шимпанзе различий в последовательностях не обнаружено. При сравнении последовательностей человека и макаки-резуса было обнаружено единственное различие в одной аминокислоте.Напротив, сравнение человека с дрожжами показывает разницу в 44 аминокислотах, предполагая, что люди и шимпанзе имеют более недавнего общего предка, чем люди и макака-резус или люди и дрожжи.

Структура белка

Как обсуждалось ранее, форма белка имеет решающее значение для его функции. Чтобы понять, как белок приобретает свою окончательную форму или конформацию, нам необходимо понять четыре уровня структуры белка: первичный, вторичный, третичный и четвертичный .

Уникальная последовательность и количество аминокислот в полипептидной цепи — это ее первичная структура. Уникальная последовательность каждого белка в конечном итоге определяется геном, кодирующим этот белок. Любое изменение в последовательности гена может привести к добавлению другой аминокислоты к полипептидной цепи, вызывая изменение структуры и функции белка. При серповидно-клеточной анемии β-цепь гемоглобина имеет единственную аминокислотную замену, вызывающую изменение как структуры, так и функции белка.Что наиболее примечательно, так это то, что молекула гемоглобина состоит из двух альфа-цепей и двух бета-цепей, каждая из которых состоит примерно из 150 аминокислот. Таким образом, молекула содержит около 600 аминокислот. Структурное различие между нормальной молекулой гемоглобина и молекулой серповидноклеточных клеток, которое резко снижает продолжительность жизни пораженных людей, состоит в одной из 600 аминокислот.

Из-за этого изменения одной аминокислоты в цепи обычно двояковогнутые или дискообразные эритроциты принимают форму полумесяца или «серпа», что закупоривает артерии.Это может привести к множеству серьезных проблем со здоровьем, таких как одышка, головокружение, головные боли и боли в животе у людей, страдающих этим заболеванием.

Образцы сворачивания, возникающие в результате взаимодействий между частями аминокислот, не относящихся к R-группам, приводят к вторичной структуре белка. Наиболее распространены альфа (α) -спиральные и бета (β) -пластинчатые листовые структуры. Обе структуры удерживаются в форме водородными связями. В альфа-спирали связи образуются между каждой четвертой аминокислотой и вызывают поворот аминокислотной цепи.

В β-складчатом листе «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи. Группы R прикреплены к атомам углерода и проходят выше и ниже складок складки. Гофрированные сегменты выровнены параллельно друг другу, а водородные связи образуются между одинаковыми парами атомов на каждой из выровненных аминокислот. Структуры α-спирали и β-складчатых листов обнаруживаются во многих глобулярных и волокнистых белках.

Уникальная трехмерная структура полипептида известна как его третичная структура.Эта структура вызвана химическим взаимодействием между различными аминокислотами и участками полипептида. Прежде всего, взаимодействия между группами R создают сложную трехмерную третичную структуру белка. Могут быть ионные связи, образованные между группами R на разных аминокислотах, или водородные связи, помимо тех, которые участвуют во вторичной структуре. Когда происходит сворачивание белка, гидрофобные группы R неполярных аминокислот лежат внутри белка, тогда как гидрофильные группы R лежат снаружи.Первые типы взаимодействий также известны как гидрофобные взаимодействия.

В природе некоторые белки образованы из нескольких полипептидов, также известных как субъединицы, и взаимодействие этих субъединиц образует четвертичную структуру. Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру. Например, гемоглобин представляет собой комбинацию четырех полипептидных субъединиц.

Рис. 2.22 На этих иллюстрациях можно увидеть четыре уровня белковой структуры.

Каждый белок имеет свою уникальную последовательность и форму, удерживаемую химическими взаимодействиями.Если белок подвержен изменениям температуры, pH или воздействию химикатов, структура белка может измениться, потеряв свою форму в результате так называемой денатурации , как обсуждалось ранее. Денатурация часто обратима, поскольку первичная структура сохраняется, если денатурирующий агент удаляется, позволяя белку возобновить свою функцию. Иногда денатурация необратима, что приводит к потере функции. Один из примеров денатурации белка можно увидеть, когда яйцо жарят или варят.Белок альбумина в жидком яичном белке денатурируется при помещении на горячую сковороду, превращаясь из прозрачного вещества в непрозрачное белое вещество. Не все белки денатурируются при высоких температурах; например, бактерии, которые выживают в горячих источниках, имеют белки, которые адаптированы для работы при этих температурах.

Концепция в действии

Чтобы получить дополнительную информацию о белках, исследуйте «Биомолекулы: Белки» с помощью этой интерактивной анимации.

Нуклеиновые кислоты являются ключевыми макромолекулами в непрерывности жизни.Они несут генетический план клетки и несут инструкции для функционирования клетки.

Двумя основными типами нуклеиновых кислот являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) . ДНК — это генетический материал, содержащийся во всех живых организмах, от одноклеточных бактерий до многоклеточных млекопитающих.

Другой тип нуклеиновой кислоты, РНК, в основном участвует в синтезе белка. Молекулы ДНК никогда не покидают ядро, а вместо этого используют посредника РНК для связи с остальной частью клетки.Другие типы РНК также участвуют в синтезе белка и его регуляции.

ДНК и РНК состоят из мономеров, известных как нуклеотидов . Нуклеотиды объединяются друг с другом с образованием полинуклеотида, ДНК или РНК. Каждый нуклеотид состоит из трех компонентов: азотистого основания, пентозного (пятиуглеродного) сахара и фосфатной группы. Каждое азотистое основание в нуклеотиде присоединено к молекуле сахара, которая присоединена к фосфатной группе.

Рис. 2.23. Нуклеотид состоит из трех компонентов: азотистого основания, пентозного сахара и фосфатной группы.
ДНК

имеет двойную спиральную структуру. Он состоит из двух цепей или полимеров нуклеотидов. Нити образованы связями между фосфатными и сахарными группами соседних нуклеотидов. Нити связаны друг с другом в своих основаниях водородными связями, и нити наматываются друг на друга по своей длине, отсюда и описание «двойной спирали», что означает двойную спираль.

Рис. 2.24. Химическая структура ДНК с цветной меткой, обозначающей четыре основания, а также фосфатный и дезоксирибозный компоненты основной цепи.

Чередующиеся сахарные и фосфатные группы лежат на внешней стороне каждой цепи, образуя основу ДНК. Азотистые основания сложены внутри, как ступени лестницы, и эти основания соединяются в пару; пары связаны друг с другом водородными связями. Основания спариваются таким образом, чтобы расстояние между скелетами двух цепей было одинаковым по всей длине молекулы. Правило состоит в том, что нуклеотид A соединяется с нуклеотидом T, а G — с C, см. Раздел 9.1 для более подробной информации.

Живые существа основаны на углероде, потому что углерод играет такую ​​важную роль в химии живых существ. Четыре позиции ковалентной связи атома углерода могут дать начало широкому разнообразию соединений с множеством функций, что объясняет важность углерода для живых существ. Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки, обеспечивают структурную поддержку многих организмов и могут быть обнаружены на поверхности клетки в качестве рецепторов или для распознавания клеток.Углеводы классифицируются как моносахариды, дисахариды и полисахариды, в зависимости от количества мономеров в молекуле.

Липиды — это класс макромолекул, неполярных и гидрофобных по природе. Основные типы включают жиры и масла, воски, фосфолипиды и стероиды. Жиры и масла представляют собой запасенную форму энергии и могут включать триглицериды. Жиры и масла обычно состоят из жирных кислот и глицерина.

Белки — это класс макромолекул, которые могут выполнять широкий спектр функций для клетки.Они помогают метаболизму, обеспечивая структурную поддержку и действуя как ферменты, переносчики или гормоны. Строительными блоками белков являются аминокислоты. Белки организованы на четырех уровнях: первичный, вторичный, третичный и четвертичный. Форма и функция белка неразрывно связаны; любое изменение формы, вызванное изменениями температуры, pH или химического воздействия, может привести к денатурации белка и потере функции.

Нуклеиновые кислоты — это молекулы, состоящие из повторяющихся единиц нуклеотидов, которые управляют клеточной деятельностью, такой как деление клеток и синтез белка.Каждый нуклеотид состоит из пентозного сахара, азотистого основания и фосфатной группы. Есть два типа нуклеиновых кислот: ДНК и РНК.

аминокислота : мономер белка

углевод: биологическая макромолекула, в которой соотношение углерода, водорода и кислорода составляет 1: 2: 1; углеводы служат источниками энергии и структурной поддержкой в ​​клетках

целлюлоза: полисахарид, который составляет клеточные стенки растений и обеспечивает структурную поддержку клетки

хитин: тип углеводов, который образует внешний скелет членистоногих, таких как насекомые и ракообразные, и клеточные стенки грибов

денатурация: потеря формы белка в результате изменений температуры, pH или воздействия химических веществ

дезоксирибонуклеиновая кислота (ДНК): двухцепочечный полимер нуклеотидов, несущий наследственную информацию клетки

дисахарид: два мономера сахара, которые связаны между собой пептидной связью

фермент : катализатор биохимической реакции, который обычно представляет собой сложный или конъюгированный белок

жир: липидная молекула, состоящая из трех жирных кислот и глицерина (триглицерида), которая обычно существует в твердой форме при комнатной температуре

гликоген: запасной углевод у животных

гормон: химическая сигнальная молекула, обычно белок или стероид, секретируемая эндокринной железой или группой эндокринных клеток; действия по контролю или регулированию определенных физиологических процессов

липиды: класс макромолекул, неполярных и нерастворимых в воде

макромолекула: большая молекула, часто образованная полимеризацией более мелких мономеров

моносахарид: единичное звено или мономер углеводов

нуклеиновая кислота: биологическая макромолекула, которая несет генетическую информацию клетки и несет инструкции для функционирования клетки

нуклеотид : мономер нуклеиновой кислоты; содержит пентозный сахар, фосфатную группу и азотистое основание

масло: ненасыщенный жир, являющийся жидкостью при комнатной температуре

фосфолипид: основной компонент мембран клеток; состоит из двух жирных кислот и фосфатной группы, присоединенной к основной цепи глицерина

полипептид: длинная цепь аминокислот, связанных пептидными связями

полисахарид: длинная цепь моносахаридов; могут быть разветвленными и неразветвленными

белок: биологическая макромолекула, состоящая из одной или нескольких цепочек аминокислот

рибонуклеиновая кислота (РНК): одноцепочечный полимер нуклеотидов, участвующий в синтезе белка

насыщенная жирная кислота: длинноцепочечный углеводород с одинарными ковалентными связями в углеродной цепи; количество атомов водорода, прикрепленных к углеродному скелету, максимально

крахмал: запасной углевод в растениях

стероид: тип липида, состоящий из четырех конденсированных углеводородных колец

транс-жиры: форма ненасыщенного жира с атомами водорода, соседствующими с двойной связью друг напротив друга, а не на одной стороне двойной связи

триглицерид: молекула жира; состоит из трех жирных кислот, связанных с молекулой глицерина

ненасыщенная жирная кислота: длинноцепочечный углеводород, имеющий одну или несколько двойных связей в углеводородной цепи

Атрибуция в СМИ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *