Разное

Список незаменимые аминокислоты для человека: Незаменимые аминокислоты

Содержание

Незаменимые аминокислоты

Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме, в частности, в организме человека. Поэтому их поступление в организм с пищей необходимо.

Незаменимыми для человека и животных являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.

 Содержание незаменимых аминокислот в еде

  • Валин содержится в зерновых, мясе, грибах, молочных продуктах, арахисе, сое
  • Изолейцин содержится в миндале, кешью, курином мясе, турецком горохе (нут), яйцах, рыбе, чечевице, печени, мясе, ржи, большинстве семян, сое.
  • Лейцин содержится в мясе, рыбе, буром рисе, чечевице, орехах, большинстве семян.
  • Лизин содержится в рыбе, мясе, молочных продуктах, пшенице,орехах.
  • Метионин содержится в молоке, мясе, рыбе, яйцах, бобах, фасоли, чечевице и сое.
  • Треонин содержится в молочных продуктах и яйцах, в умеренных количествах в орехах и бобах.
  • Триптофан содержится в овсе, бананах, сушёных финиках, арахисе, кунжуте, кедровых орехах, молоке, йогурте, твороге, рыбе, курице, индейке, мясе.
  • Фенилаланин содержится в говядине, курином мясе, рыбе, соевых бобах, яйцах, твороге, молоке. Также является составной частью синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.

Таблица содержания незаменимых аминокислот в продуктах

(грамм на 100 грамм продукта)

№ п/п продукт лейцин изолейцин гистидин тирозин глицин лизин валин метионин фенилаланин Иусс*
1 Молоко женское 0,108 0,062 0,028 0,06 0,042 0,082 0,072 0,022 0,056 0,053
2 Молоко коровье 0,278 0,182 0,081 0,119 0,03 0,218 0,189 0,068 0,136 0,130
3 Кефир 0,263 0,173 0,075 0,112 0,056 0,209 0,183 0,063 0,138 0,126
4 Творог 0,924 0,548 0,306 0,456 0,184 0,725 0,695 0,263 0,491 0,467
5 Яйцо куриное 1,13 0,83 0,294 0,515 0,37 0,883 0,895 0,378 0,732 0,611
6 Мясо говяжье 1,73 1,06 0,805 0,596 1,447 2,009 1,156 0,528 0,789 0,961
7 Мясо куриное 1,62 1,117 0,697 0,66 1,519 1,975 1,024 0,494 0,932 0,956
8 Печень говяжья 1,543 0,8 0,439 0,47 0,903 1,295 0,987 0,345 0,845 0,724
9 Треска 1,222 0,879 0,54 0,439 0,525 1,551 0,929 0,488 0,651 0,708
10 Крупа рисовая 1,008 0,369 0,135 0,176 0,63 0,142 0,425 0,223 0,313 0,329
11 Крупа манная 0,364 0,258 0,186 0,158 0,263 0,32 0,386 0,103 0,399 0,245
12 Крупа гречневая 0,702 0,301 0,203 0,16 0,796 0,431 0,343 0,183 0,395 0,331
13 Крупа овсяная 0,672 0,302 0,137 0,234 0,453 0,384 0,384 0,198 0,363 0,308
14 Крупа пшенная 1,04 0,244 0,137 0,226 0,22 0,226 0,333 0,207 0,48 0,309
15 Крупа перловая 0,584 0,258 0,152 0,148 0,308 0,286 0,313 0,173 0,331 0,253
16 Горох 1,204 0,78 0,395 0,227 0,48 0,984 0,804 0,16 0,763 0,539
17 Мука пшеничная 0,567 0,29 0,096 0,149 0,149 0,12 0,387 0,108 0,322 0,219
18 Макаронные изделия 0,69 0,38 0,133 0,253 0,215 0,139 0,412 0,12 0,488 0,290
19 Хлеб ржаной 0,275 0,146 0,118 0,293 0,217 0,132 0,062 0,062 0,278 0,173
20 Хлеб пшеничный 0,55 0,25 0,106 0,162 0,264 0,103 0,286 0,088 0,33 0,212
21 Печенье 0,357 0,171 0,247 0,088 0,172 0,08 0,054 0,054 0,334 0,162

*Иусс — сравнительный индекс удельного содержания. 1 соответствует максимальному содержанию каждой аминокислоты по сравнению с другими продуктами в наборе

Компенсация незаменимых аминокислот

Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так например недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп, снижает потребности в метионине,а глутаминовая кислота частично замещает аргинин. В то же время необходимо отметить, что недостаток хотя бы одной незаменимой аминокислоты, приводит к неполному усвоению и других аминокислот. В таких условиях развитие организмов напрямую зависит от того незаменимого вещества, недостаток которого ощущается наиболее остро (закон минимума Либиха). Так же необходимо помнить, что для разных видов организмов список незаменимых аминокислот в некоторых случаях различен.

Что такое незаменимые аминокислоты, как пополнить их запас в организме?

Что такое незаменимые аминокислоты, как пополнить их запас в организме?

Организм человека не может функционировать без аминокислот. Некоторые из них он вырабатывает самостоятельно – заменимые и условно заменимые. А некоторые получает исключительно с пищей. Рассказываем, что такое незаменимые аминокислоты, и как пополнить их запас в организме.


Аминокислоты — важное строительное «сырье» в организме человека. Все аминокислоты делятся на 3 группы: заменимые, условно заменимые и незаменимые. Классификация зависит от возможности организма самостоятельно производить эти вещества. Те, которые самостоятельно не вырабатываются, играют большую роль в образовании гормонов, строительстве белковых цепей.

Группа незаменимых аминокислот


Это соединения, которые состоят из углерода, водорода, кислорода и азота. Из общего количества только 9 структурных частей белка считаются незаменимыми. Это вещества, которые не могут синтезироваться организмом, а человек получает их исключительно из пищи.



К незаменимым аминокислотам относятся:

  • изолейцин;
  • лизин;
  • лейцин;
  • гистидин;
  • триптофан;
  • фенилаланин;
  • валин;
  • треонин;
  • метионин.


Внимание! Каждая из известных кислот является необходимой для слаженной работы всех систем. Рацион должен быть сбалансирован и содержать все вещества. Они обеспечивают полноценную здоровую жизнь, сохраняют молодость и крепость мышц.

Для чего нужны?


Без незаменимых аминокислот не проходит ни один процесс в организме. К основным из них относятся:

  • ответственность за структуру и функционирование белка;
  • стимулирование роста мышц и ответственность за их восстановление;
  • участие в нормальном метаболизме;
  • включение в состав коллагена и эластина;
  • регулирование аппетита, сна и настроения;
  • помощь в формировании защитной оболочки вокруг нервных клеток.


Поэтому регулярное и достаточное поступление аминокислот данной группы является обязательным.

Симптомы дефицита


Если с пищей не поступает нормы незаменимых аминокислот, то возникает дефицит данных веществ. Его симптомы:

  • постоянное чувство усталости и сонливости;
  • анемия, которая сопровождается головокружением и прочими характерными симптомами;
  • значительно ослабевает иммунитет;
  • начинают выпадать волосы.


При этом есть неприятности и при лишнем потреблении данных веществ. Могут начаться патологии щитовидной железы, нарушается работа суставов. Поэтому для употребления суточной нормы незаменимых аминокислот необходимо правильно сформировать рацион, а также проконсультироваться с диетологом.

Как восполнить недостаток


Для обеспечения организма незаменимыми аминокислотами, нужно соблюдать всего несколько правил разумного питания:

  • ежедневно в рационе должна присутствовать молочная и кисломолочная еда;
  • мясо и рыбу также нужно употреблять ежедневно, но готовить их лучше на пару, запекать или тушить, подавать с зеленью;
  • 50 грамм орешков и семян в сутки способствуют обогащению незаменимыми аминокислотами в любом возрасте;
  • следует есть бобовые продукты и зерновые с зеленью.


При регулярном соблюдении таких рекомендаций опасного дефицита незаменимых аминокислот не возникнет, а человек сохранит молодость и здоровье.


Внимание! Особенно важно пополнить рацион аминокислотами при регулярном посещении тренажерного зала или профессиональных занятиях спортом. Тогда расход аминокислот значительно увеличивается, а правильному питанию нужно уделить особое внимание. Оно будет способствовать не только восполнению запаса полезных элементов, но и естественному снижению веса и наращиванию мышечной массы.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте
Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Незаменимые аминокислоты ЕАА и их эффекты, источники и дозировка

Вы знаете что объединяет ВСАА и ЕАА? Прочитайте нашу статью о том, почему незаменимые аминокислоты являются строительным элементом для тела и важной частью рациона спортсменов. Узнайте, какие аминокислоты считаются незаменимыми, как их принимать и использовать для достижения своих фитнес целей.

Уже слово “незаменимые” в названии аминокислот указывают на то, что они необходимы для нашего организма. Прежде чем мы расскажем о каждой незаменимой аминокислоте и ее эффектах, давайте рассмотрим список аминокислот для нашего тела и их разделение.

Что такое аминокислоты?

Аминокислоты это структурирующие элементы содержащие азот, углерод, водород, кислород с разнообразной группой боковых цепей которые образуют пептиды и белки. Они представляют 75% массы тела, 95% мышц, включая мышцы сердца. К тому же, именно из аминокислот вырабатываются 100% гормонов, нейротрансмиттеров. [3]

В нашей ДНК закодировано 20 аминокислот, которые участвуют в синтезе белков, причем 9 из них незаменимые. Это значит, что 9 незаменимых аминокислот необходимо принимать с едой или добавками. [1] Аминокислоты делятся на заменимые и незаменимые, а также условно незаменимые аминокислоты. Пока в теле не хватает 1 незаменимой аминокислоты или заменимой, остальные 19 аминокислот практически не используются. [4]

К незаменимым аминокислотам относятся [2]:

  • гистидин
  • изолейцин
  • лейцин
  • лизин
  • метионин
  • фенилаланин
  • треонин
  • триптофан
  • валин

Незаменимые аминокислоты отличаются в зависимости от типа и возраста. Поэтому некоторые эксперты считают незаменимыми только 8 аминокислот, исключая гистидин. Тем не менее, научное общество работает со всеми 9 незаменимыми аминокислотами, без исключений. [3]

Заменимыми аминокислотами считаются те, которые тело может производить самостоятельно, даже если их не принимать с пищей. В этот список включены аланин, аргинин, аспарагиновая кислота, цистеин, глютаминовая кислота, глютамин, глицин, пролин, серин и тирозин. [2]

Условно заменимые аминокислоты они производятся самостоятельно если организм не подвержен заболеванию или стрессу. К этой категории относятся аргинин, цистеин, глютамин, тирозин, глицин, орнитин, пролин и серин. [2]

Незаменимые аминокислоты и их эффекты

Основным отличием между незаменимыми аминокислотами и остальными аминокислотами является то, что их необходимо дополнять. Это значит, что ваш рацион должен быть сбалансирован и дополнен каждой незаменимой аминокислотой. Почему? Мы объясним это на примерах конкретных незаменимых аминокислот в человеческом организме.

1. Лизин

Лизин играет важную роль в росте мышц, поддержании здоровья костей, регенерации после травм или операции. К тому же, он регулирует выработку гормонов, антител и энзимов в теле. Он может предоставлять противовирусные эффекты и необходим для выработки энергии, функционирования иммунитета и производства коллагена и эластина. [5] [6]

2. Гистидин

Гистидин облегчает рост, производство кровяных клеток и заживление тканей. Также он помогает поддерживать специальную защитную мембрану нервных клеток, которая называется миелиновая оболочка. Тело метаболизирует гистидин в гистамин, который необходим для иммунитета, репродуктивных функций и пищеварения. Результаты исследования с участием женщин с ожирением показывают, что добавки с гистидином могут снижать ИМТ и инсулинорезистентность. Дефицит гистидина может вызвать анемию и низкий уровень крови у людей с заболеваниями почек или артритом. [5] [7] [8]

3. Треонин

Треонин необходим для здоровья кожи и зубов, потому что он входит в состав эмали, коллагена и эластина. Он поддерживает жировой обмен и может быть полезен для людей с расстройствами пищеварения, беспокойством и легкой депрессией. [5] [9]

4. Метионин

Метионин вместе с незаменимой аминокислотой цистеином необходимы для здоровья кожи и волос. Метионин также помогает поддерживать крепкие ногти. Способствует правильному поглощению селена и цинка и удалению тяжелых металлов из организма, таких как свинец и ртуть. [5] [10]

5. Валин

Валин необходим для психического здоровья, координации мышц и стабильного эмоционального состояния. Спортсмены используют добавки валина для роста мышц, регенерации тканей и в качестве энергетических добавок. Его недостаток может вызвать бессонницу и снижение умственной функции. [5] [11]

6. Изолейцин

Изолейцин поддерживает заживление ран, укрепляет иммунитет и регулирует уровень сахара и выработку гормонов. Он в основном присутствует в мышечной ткани и контролирует уровень энергии. Пожилые люди могут быть более склонны к дефициту изолейцина, чем молодые, что может привести к потере мышечной массы и тремору. [5] [12]

7. Лейцин

Лейцин является важной аминокислотой в синтезе белка. В то же время он регулирует уровень сахара в крови и способствует росту и регенерации мышц и костей. Он также важен для заживления ран и производства гормона роста. Дефицит лейцина может привести к проблемам с кожей, выпадению волос и усталости. Вы можете прочитать больше о лейцине в нашей статье Лейцин и его эффективное использование для роста и регенерации мышц. [5] [13]

Лейцин, изолейцин и валин – аминокислоты с разветвленной цепью, известные как BCAA. Они играют особую роль в организме, включая синтез белка, выработку энергии и образование других аминокислот. Если вы заинтересованы в BCAA, прочитайте нашу статью BCAA и их влияние на организм.

8. Фенилаланин

Фенилаланин помогает организму использовать другие аминокислоты, а также белки и энзимы. Организм превращает фенилаланин в тирозин, который необходим для нормальной работы мозга. Он также является прекурсором нейротрансмиттеров дофамина, адреналина и нейропинефрина. Дефицит фенилаланина встречается редко, но может вызывать экзему, усталость и проблемы с памятью. [14]

Интересным является то, что люди с генетическим заболеванием под названием фенилкетонурия не способны метаболизировать фенилаланин. Таким людям следует избегать продуктов со слишком высоким содержанием фенилаланина.

9. Триптофан

Триптофан необходим для правильного роста детей грудного возраста и является исходным материалом для образования серотонина и мелатонина. Серотонин является нейротрансмиттером, который регулирует аппетит, сон, настроение и боль. Мелатонин также регулирует сон и является частью гормонов сна. [5] [16]

Одно исследование предполагает, что добавление триптофана может улучшить эмоциональную стабильность у здоровых женщин. Напротив, его недостаток вызывает пеллагру, заболевание, которое может привести к деменции, кожной сыпи и проблемам с пищеварением. [5] [15]

Из вышеупомянутых эффектов EAA мы можем сделать вывод, что незаменимые аминокислоты являются основой для здоровья и правильного функционирования организма. Хотя аминокислоты чаще всего связаны с ростом и наращиванием мышечной массы у спортсменов, организм в гораздо большей степени зависит от них. Вот почему мы не должны пренебрегать их употреблением. Их недостаток может негативно повлиять на общее состояние здоровья, включая нервную, репродуктивную, иммунную и пищеварительную системы.

Незаменимые аминокислоты и спорт

Одной из ключевых задач незаменимых аминокислот является их влияние на рост мышц. Многие из EAA участвуют в синтезе белка, и это не только незаменимые аминокислоты BCAA. Они делают это благодаря своей способности активировать путь mTORC1. Если вы занимаетесь фитнесом, возможно, вы уже слышали о mTOR, который эффективно стимулирует синтез белка. MTORC1 включает в себя не только mTOR, но и другие процессы, связанные с синтезом мышечного белка. [20]

mTORC1 контролирует анаболическую и катаболическую сигнализацию скелетных мышц, регулирует рост мышц и их разрушение. Это подтверждается исследованиями, которые показали, что добавление незаменимых аминокислот в сочетании с тренировками с утяжелением оказывает дополнительное влияние на стимулирование синтеза белка по сравнению с тренировками без добавок. [18] [19]

По сути, это означает, что EAA может помочь вам добиться максимальных результатов в фитнесе, стимулируя синтез мышечного белка. Это в свою очередь приводит к росту мышц и сводит к минимуму их потерю.

Источник незаменимых аминокислот

Поскольку наш организм не может вырабатывать незаменимые аминокислоты, важно дополнять их с рационом. К счастью, есть много распространенных продуктов, которые содержат достаточно незаменимых аминокислот. Продукты, в которых мы находим все 9 незаменимых аминокислот, также называются полноценными белками. К ним относятся мясо, рыба и морепродукты, птица, яйца и молочные продукты. Из растительных источников весь набор незаменимых аминокислот содержится в сое, квиноа и гречихе. Остальные растительные источники, такие как орехи или бобовые, не считаются полноценными белками, поскольку в них нет одной или нескольких незаменимых аминокислот.

Если вы вегетарианец и ваша диета разнообразна, вы можете обеспечить правильное употребление всех незаменимых аминокислот. Например, правильный выбор различных видов бобовых, орехов, семян или овощей поможет вам удовлетворить ежедневные потребности в незаменимых аминокислотах даже без продуктов животного происхождения. Тем не менее, вы всегда можете добавить их с пищевыми добавками EAA. [17]

В таблице представлен список незаменимых аминокислот и их источников. [5]

Незаменимые

аминокислоты

Источники

Лизин

мясо, яйца, соя, черная фасоль, киноа, тыквенные семена

Гистидин

мясо, рыба, индейка, орехи, семена, зерна

Треонин

творог, ростки пшеницы

Метионин

яйца, зерна, орехи, семена

Валин

соя, сыр, арахис, грибы, зерна, овощи

Изолейцин

мясо, рыба, индейка, яйца, сыр, чечевица, орехи и семена

Лейцин

молочные продукты, соя, бобовые

Фенилаланин

молочные продукты, мясо, соя, рыба, фасоль, орехи

Триптофан

ростки пшеницы, творог, курица, индейка

Ежедневная порция незаменимых аминокислот

Вы уже знаете, что для спортсменов ЕАА важна не только для здоровья, но и для достижения целей в фитнесе. Рекомендуемая суточная доза незаменимых аминокислот была определена Всемирной организацией здравоохранения следующим образом [21]:

Незаменимые аминокислоты мг/кг массы тела мг на 70 кг

Гистидин

10

700

Изолейцин

20

1400

Лейцин

39

2730

Лизин

30

2100

Метионин + цистеин

10,4 + 4,1 (общее 15)

1050 (общее)

Фенилаланин + тирозин

25 (общее)

1750 (общее)

Треонин

15

1050

Триптофан

4

280

Валин

26

1820

Мы рассказали вам все необходимое, что вы должны знать о EAA. Действительно, употребление незаменимых аминокислот – это путь к здоровью. Поэтому, пожалуйста, расскажите нам в комментариях из каких источников, вы чаще всего получаете EAA. Если вам понравилась эта статья то поддержите ее, поделившись ею.

Источники:

[1] Kamal Patel – Amino Acids – https://examine.com/supplements/amino-acid/

[2] Medline Plus – Amino Acids – https://medlineplus.gov/ency/article/002222.htm

[3] Rosane Oliveira – The essentials – Part One – https://ucdintegrativemedicine.com/2016/02/the-essentials-part-one/#gs.k4fjit

[4] Science Direct – Essential Amino Acids – https://www.sciencedirect.com/topics/medicine-and-dentistry/essential-amino-acid

[5] Jennifer Berry – What to know about essential amino acids – https://www.medicalnewstoday.com/articles/324229.php

[6] U.S. National library of Medicine – Lysine https://pubchem.ncbi.nlm.nih.gov/compound/L-lysine

[7] R. N. Feng, Y. C. Niu, X. W. Sun, Q. Li, C. Zhao, C. Wang, F. C. Guo, C. H. Sun – Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial – https://link.springer.com/article/10.1007%2Fs00125-013-2839-7

[8] U.S. National library of Medicine – Histidine – https://pubchem.ncbi.nlm.nih.gov/compound/L-histidine

[9] U.S. National library of Medicine – L-Threonine – https://pubchem.ncbi.nlm.nih.gov/compound/L-threonine

[10] U.S. National library of Medicine – Methionine – https://pubchem.ncbi.nlm.nih.gov/compound/L-methionine

[11] U.S. National library of Medicine – Valine – https://pubchem.ncbi.nlm.nih.gov/compound/L-valine

[12] U.S. National library of Medicine – L-isoleucine – https://pubchem.ncbi.nlm.nih.gov/compound/l-isoleucine

[13] U.S. National library of Medicine – Leucine – https://pubchem.ncbi.nlm.nih.gov/compound/L-leucine

[14] U.S. National library of Medicine – Phenylalanine – https://pubchem.ncbi.nlm.nih.gov/compound/L-phenylalanine

[15] M. H. Mohajeri, J. Wittwer, K. Vargas, E. Hogan – Chronic treatment with a tryptophan-rich protein hydrolysate improves emotional processing, mental energy levels and reaction time in middle-aged women – https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/chronic-treatment-with-a-tryptophanrich-protein-hydrolysate-improves-emotional-processing-mental-energy-levels-and-reaction-time-in-middleaged-women/AB54DC8C47AF5C589B87EDD30B382386

[16] U.S. National library of Medicine – Tryptophan – https://pubchem.ncbi.nlm.nih.gov/compound/L-tryptophan

[17] Michelfelder AJ – Soy: a complete source of protein – https://www.ncbi.nlm.nih.gov/pubmed/19145965

[18] Kevin D Tipton, Steven E. Wolf, Elisabet Borsheim, Arthur P. Sanford – Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion – https://www.researchgate.net/publication/11074043_Acute_response_of_net_muscle_protein_balance_reflects_24-h_balance_after_exercise_and_amino_acid_ingestion

[19] Elisabet Borsheim, Kevin D. Tipton, Steven E. Wolf, Robert R. Wolfe – Essential amino acids and muscle protein recovery from resistance exercise – https://www.physiology.org/doi/full/10.1152/ajpendo.00466.2001

[20] Kris Gethin – What lifters need to know about essential amino acids – https://www.bodybuilding.com/content/what-lifters-need-to-know-about-essential-amino-acids.html

[21] World Health Organization – Protein and amino acid requirements in human nutrition – <a href=”https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf;jsessionid=4EBC7C8A1A18928BB135996F00E8324A?sequence=1″

Незаменимые есть: ученые заставили клетки давать ценные аминокислоты | Статьи

Специалисты Курчатовского геномного центра создали микроорганизмы, способные производить так называемые незаменимые аминокислоты в большом количестве. Эти вещества не образуются в организме человека и животных, но нормальная жизнедеятельность без них невозможна. Для разработки ученые применили технологию редактирования генома. В 2020 году мировой рынок незаменимых аминокислот достиг $20 млрд. Благодаря достижениям наших исследователей Россия сможет побороться на нем за ведущие позиции.

Производство незаменимых

В Курчатовском геномном центре (НИЦ «Курчатовский институт» — ГосНИИгенетика) ведут работы по созданию микроорганизмов, которые смогут в большом количестве производить незаменимые аминокислоты. Особенность этих веществ в том, что организм не может их синтезировать, они поступают в него только с пищей. В сельском хозяйстве это — важнейшие составляющие кормов.

— Если незаменимые аминокислоты содержатся в недостаточном количестве в пище, то у человека нарушается нормальное развитие, а сельскохозяйственные животные медленно набирают вес, потребляя большое количество корма, — пояснил заместитель директора НИЦ «Курчатовский институт» Александр Яненко.

Специалисты уже подготовили инструментарий для направленной модификации продуцентов клеточных метаболитов в различных бактериях, включая коринебактерии, бациллы и другие простейшие организмы. В руках ученых специальные ферменты — «молекулярные ножницы», с помощью которых редактируют геномы для получения нужных штаммов. Кроме этого, чтобы направленно изменять геном (ДНК) клетки, нужно знать ее полные нуклеотидные последовательности, поэтому специалисты Курчатовского института проводят массовое полногеномное секвенирование микроорганизмов (полная расшифровка их генома). Сегодня прочитано уже больше 1 тыс.

Перехитрить бактерию

В обычных условиях в клетках микроорганизма содержится не более 0,2–0,5 г аминокислоты на литр питательной среды. Для промышленного производства нужно, чтобы клетка продуцировала не менее 100 г на 1 л. Такое количество аминокислоты выделяется в среднем за 40–50 ч.

Задача ученых — так изменить метаболизм микроорганизма, чтобы он направил все силы на генерацию нужных веществ. Уже сегодня ученым Курчатовского геномного центра удалось усилить в 100 раз продукцию микроорганизмами лизина, треонина и валина, а в ближайшее время они планируют добиться таких же результатов и для триптофана.

Справка «Известий»

Валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин относятся к незаменимым аминокислотам. Эти вещества не синтезируются клетками человека и животных, поэтому должны обязательно содержаться в нужном количестве в их пище. Незаменимые аминокислоты принимают активное участие в синтезе белков и других важных для организма соединений. Они необходимы для нормального роста и синтеза тканей тела, служат источником энергии в мышечных клетках. Нехватка этих веществ может приводить к быстрой утомляемости, усталости, слабости и иным нарушениям. В природе незаменимые аминокислоты синтезируют микроорганизмы, растения и грибы.

Раньше для получения микроорганизмов с нужными свойствами использовалась генная инженерия: в клетку встраивали чужеродные гены, чтобы получить больше нужной продукции. Но безопасность использования генно-модифицированных организмов вызывает слишком много вопросов, поэтому ученые разработали альтернативный метод геномного редактирования.

При таком подходе для модификации генов микроорганизма ученые используют механизмы, которые в норме существуют в клетке. В природных условиях гены изменяются, теряются или переходят с места на место. Эти процессы не выходят за рамки естественной клеточной изменчивости. То же самое ученые делают и при редактировании генов.

Из тысячи клеточных метаболитов они активируют один, который в результате начинает работать в 100 раз активнее. Клетка препятствует этому сверхсинтезу и стремится исправить дисбаланс. Она отключает синтез этого вещества на уровне взаимодействия белков с ДНК. Поэтому, чтобы «обмануть» клетку, ученые корректируют механизмы ее регуляции, меняя последовательности или даже удаляя некоторые гены. Только так можно получить штамм с нужным уровнем продуктивности.

Не так давно ученые Курчатовского геномного центра проанализировали штаммы, которые были разработаны в 1970–1980-х годах для производства незаменимой аминокислоты валина. Тогда не существовало методов направленного изменения генома. Микроорганизмы просто обрабатывали веществами (мутагенами), которые повышали частоту образования мутаций. Сегодня удалось обнаружить конкретные мутации, отвечающие за выработку валина. Их успешно ввели в геном штамма-суперпродуцента.

— В 2020 году мировой рынок незаменимых аминокислот составил около $20 млрд. Благодаря достижениям наших ученых Россия сможет обеспечить незаменимыми аминокислотами собственное животноводство, а также побороться за ведущие позиции на этом рынке, — считает Александр Яненко.

На верном пути

Прочесть геномы более 1 тыс. микроорганизмов — уже значительный научный результат, уверен директор научного центра «RASA-Политех» Санкт-Петербургского политехнического университета Петра Великого (вуз — участник проекта повышения конкурентоспособности образования «5-100») Игорь Радченко.

— Обычно генетическая информация многомерна: один и тот же ген может одновременно влиять на несколько, казалось бы, независимых функций организма. Поэтому специалисты из Курчатовского института пошли по верному пути, взяв для модификации одноклеточные микроорганизмы, — отметил эксперт.

На примере единичных клеток легко увидеть результаты редактирования, полагает ученый. Кроме того, в процессе исследования можно отделить клетки, где процесс происходит удачно. Таким образом создается колония отредактированных клеток, которая продолжает делиться и развиваться. И все клетки-потомки несут именно те генетические изменения, которые были заложены изначально, добавил Игорь Радченко.

— Во всем мире проводят работы, направленные на получение эффективных штаммов-продуцентов. Безусловно, применение этих технологий в России имеет огромное значение как для развития отечественной промышленности, так и сельского хозяйства, — сказала доцент Исследовательской школы химических и биомедицинских технологий Томского политехнического университета Александра Першина.

Разработки в данной области довольно быстро коммерциализируются, добавила она.

Незаменимые аминокислоты, где содержатся незаменимые аминокислоты. 8 незаменимых аминокислот

В современном обществе, которое руководимо методом бесструктурного управления по эгрегориально-матричному принципу, очень сложно найти истину среди транслируемой лжи. Чтобы максимально усложнить поиск истины для тех, кто не желает жить в ментальном рабстве, придуман один интересный приём: в обществе намеренно создаются две версии лжи, которые лишь на первый взгляд являются противоположными по своему содержанию. На самом деле они призваны занять позиции «лжи» и «правды» и тем самым скрыть настоящую истину. Один из ярких примеров такой уловки — миф о том, что организму необходим белок.


Когда человек принял решение отказаться от мясных продуктов или же вовсе от продуктов животного происхождения, он неизбежно столкнётся с мифом о необходимости белка, более того, будет сталкиваться с ним регулярно, отвечая на замечания других людей о том, что он якобы негармонично питается. Однако сегодня уже широко распространена информация о том, что белок организму вовсе не нужен, а нужны 20 аминокислот, из которых организм и синтезирует белок. К счастью, сегодня в миф о необходимости животного белка верит всё меньше и меньше людей. Ведь совершенно очевидно, что белок, из которого построено тело свиньи, коровы или курицы, совершенно не подходит для построения клеток человека, и такой белок в любом случае является для нас чужеродным.


Что же происходит в организме человека, когда в него попадает чужеродный белок? Организм прикладывает титанические усилия, чтобы разложить его на базовые составляющие — аминокислоты — и уже из них синтезировать собственный белок. И процесс этот, во-первых, энергоёмкий, а во-вторых, в процессе разложения чужеродного белка образуются токсичные вещества. Особенно вредные и опасные токсины образуются в процессе разложения животного белка.


Однако если с вопросом необходимости белка всё понятно, то с аминокислотами вопросов остаётся много. И здесь вступает в игру вторая версия лжи на тему необходимости мяса: дескать, белок-то нам не нужен, но вот среди аминокислот есть незаменимые, то есть те, которые нигде, кроме как из мяса, взять нельзя. Таким образом, результат мы получаем прежний: миф о белке разрушен, но от мяса, выходит, отказываться нельзя. И казалось бы, до «правды» мы докопались, только эта правда ровным счётом ничего не меняет и снова служит интересам мясоперерабатывающей промышленности. И здесь важно разрушить ещё один миф о том, что незаменимые аминокислоты нельзя взять нигде, кроме пищи животного происхождения.


Незаменимые аминокислоты для человека: список


Миф о невозможности получить незаменимые аминокислоты из растительной пищи не выдерживает никакой критики. Этот миф можно разнести в пух и прах простым аргументом: в мире есть тысячи и сотни тысяч живых существ, которые никогда в своей жизни не употребили ни грамма мясной пищи — откуда же они берут незаменимые аминокислоты? И если предположить, что, к примеру, в мясе курицы содержатся эти незаменимые аминокислоты, то возникает вопрос, откуда же бедная курочка их берёт? Неужели втихаря поедает мясо?


Любому школьнику известно, что курица питается растительной пищей. Из этого можно сделать два возможных вывода, каждый из которых разрушает миф о необходимости употребления мяса в качестве источника незаменимых аминокислот.

  • Курица получает незаменимые аминокислоты из растительной пищи. Значит, то же самое доступно и человеку.
  • Курица не получает незаменимые аминокислоты из растительной пищи. Значит, в её мясе они не содержатся и источником незаменимых аминокислот мясо быть не может.


Наиболее вероятным и логичным является первый вариант, так как в природе всё продумано и гармонично, да и без полного списка аминокислот травоядные не смогли бы полноценно жить. Поэтому совершенно очевидно, что все незаменимые аминокислоты можно получить из растительной пищи.


Почему, собственно, аминокислоты называют «незаменимыми»? Дело в том, что из 20 аминокислот, которые участвуют в синтезе белка, организм способен сам вырабатывать одиннадцать, а девять должен получать извне. Есть разные мнения относительно незаменимых аминокислот. Одни источники говорят, что их восемь, другие настаивают на том, что их девять. Почему такие разногласия и сколько их на самом деле? Дело в том, что действительно незаменимых аминокислот только восемь, а девятая — гистидин — незаменима только для детского организма, а во взрослом прекрасно синтезируется самостоятельно. Незаменимой для детей аминокислотой является и аргинин, который в организме взрослого человека также синтезируется. Поэтому ответ на вопрос «сколько незаменимых аминокислот для взрослого человека?» очевиден: их восемь.


Итак, существует 8 незаменимых аминокислот, которые организм не может синтезировать сам:

  • валин;
  • изолейцин;
  • лейцин;
  • лизин;
  • метионин;
  • треонин;
  • триптофан;
  • фенилаланин.


Где содержатся незаменимые аминокислоты


Как уже сказано выше, миф о наличии незаменимых аминокислот только в животной пище — это именно миф, активно продвигаемый пищевыми корпорациями и владельцами мясоперерабатывающей промышленности. И этот миф, к сожалению, пришёл на смену развенчанному и поверженному мифу о необходимости чужеродного белка для построения клеток человека. Однако и он уже пошатнулся. В интернете можно найти достаточно информации о том, в каких растительных продуктах содержатся все восемь незаменимых аминокислот.

  • В первую очередь, незаменимыми аминокислотами богаты бобовые — горох, чечевица, нут, арахис и т. д. Однако стоит отметить, что арахис крайне нежелателен для употребления. С целью обезопасить растение и плоды от поедания вредителями в процессе выращивания арахис скрещивают с генами петунии, и такой арахис крайне губителен для печени. И по статистике на рынке стран СНГ такого генетически модифицированного арахиса больше 90 %. Однако, даже если арахис не модифицирован, при неправильных условиях хранения на нём образуется очень опасная плесень, которая приводит к раковым заболеваниям. Также арахис закисляет наш организм, что крайне вредно.
  • Аминокислотами богаты орехи, семена и злаки. Особенно полезными будут семена подсолнечника, тыквы и кунжут. А среди злаков — овёс и нешлифованный (это важно!) рис. Среди орехов больше всего аминокислот содержат миндаль, кешью и грецкий орех.


Таким образом, полный список незаменимых аминокислот можно получить даже при исключении из рациона всех продуктов животного происхождения. Миф о дефиците незаменимых аминокислот на вегетарианской и веганской диетах — это не более чем «пугалка» для тех, кто решил перейти на здоровое, этическое питание. Мясная индустрия не может допустить массового оттока своих потребителей, поэтому сочиняет всё новые и новые мифы, чтобы заставить людей потреблять вредные для здоровья и окружающей среды продукты, на которых заинтересованные продавцы делают огромные деньги.

Аминокислоты в питании человека Текст научной статьи по специальности «Фундаментальная медицина»

lectures

АМИНОКИСЛОТЫ В ПИТАНИИ ЧЕЛОВЕКА

Лысиков Ю.А.

ГУ Институт питания РАМН, Москва

Лысиков Юрий Александрович 109240 Москва, Устьинский проезд, д. 2/14 E-mail: [email protected]

РЕЗЮМЕ

В статье представлены данные о метаболизме аминокислот в организме человека. Рассмотрена структура и свойства аминокислот, критерии незаменимости, вклад аминокислот в энергетику организма, специфические функции аминокислот, потребность в аминокислотах.

SUMMARY

The article presents data on amino acids metabolism in human organism. The review described structure and function of amino acids, essentiality criteria, amino acids energy source role, amino acids specific functions, amino acids requirements.

CO CO

СТРУКТУРА И СВОЙСТВА АМИНОКИСЛОТ

Известно около 200 природных аминокислот, из них только 20 входят в состав белков. Эти аминокислоты называют протеиногенными — строящими белки. В организме человека наряду с протеиногенными аминокислотами можно найти и другие, которые играют иную роль, например, орнитин, в-аланин, таурин и др.. Многие из протеиноген-ных аминокислот в организме человека выполняют важные самостоятельные функции, например, глицин, глютаминовая и аспарагиновая кислоты являются биологически активными соединениями, фенилаланин, тирозин и триптофан служат источником образования биогенных аминов и других биорегуляторов, глицин и таурин входят в состав желчных кислот.

Первая аминокислота, аспарагин, была открыта еще в 1806 году. Последней из обнаруженных известных аминокислот оказался треонин, который

соон

Н — С — 1ЧН2

Рис. 1. Общая структурная формула аминокислоты

удалось выделить лишь в 1938 году. Каждая аминокислота имеет тривиальное (традиционное) название, иногда связанное с источником происхождения. Например, аспарагин впервые был обнаружен в аспарагусе, глютаминовая кислота — в клейковине (глютене) пшеницы. Глицин был назван так за сладкий вкус (от греческого glykos — сладкий). В пищевых продуктах наиболее распространены 22 аминокислоты.

Все 20 аминокислот, которые входят в состав белка, характеризуются общей структурной особенностью — наличием карбоксильной группы (-СООН) и аминогруппы (-№И2), связанной с одним и тем же атомом углерода и различаются структурой боковых цепей групп) (рис. 1). Почти все аминокислоты содержат по одной карбоксильной и аминогруппе. Однако имеются аминокислоты, которые могут содержать две карбоксильные (дикарбоновые аминокислоты) или две аминогруппы (диаминоами-нокислоты). Большинство аминокислот являются а-аминокислотами, в отличие от в-аминокислот, таких как в-аланин и таурин.

Стереоизомеры аминокислот. Из-за асимметрии молекулы все а-аминокислоты, за исключением

глицина, могут существовать в форме двух Б- или Ь-стереоизомеров — оптических изомеров, которые представляют собой зеркальные изображения друг друга. В ходе биосинтеза белка в его состав попадают только Ъ-аминокислоты. Следует подчеркнуть, что присутствие в составе белка Ъ-аминокислот определяет его структуру и свойства. Б-аминокислоты никогда не включаются в белки в процессе биосинтеза. В то же время в составе белка можно обнаружить и Б-аминокислоты. Причина этого парадокса

заключается в том, что для аминокислот характерна медленная самопроизвольная неферментативная рацемизация, в результате которой в составе белка появляются Б-аминокислоты. По этой причине структура белка со временем начинает меняться, могут изменяться и его свойства. Это является одним из механизмов старения белков, что вызывает необходимость их непрерывного обновления.

Таблица 1

КЛАССИФИКАЦИЯ АМИНОКИСЛОТ [2; 3]

Химическая структура Полярность боковой цепи Изоэлектри-ческая точка р! Молекулярная масса , г/моль Степень гидрофильности Полярность боковой цепи

1. Алифатические Высокогидрофильные

Алании -1,9 6,0 89 Глютамин +9,4

Валин* -2,0 6,0 117 Аспарагин +9,7

Глицин -2,4 6,0 75 Глютаминовая кислота +10,2

Изолейцин* -2,2 5,9 131 Гистидин +10,3

Лейцин* -2,3 6,0 131 Аспарагиновая кислота +11,0

2. Серосодержащие Лизин* +15,0

Метионин* -1,5 5,7 149 Аргинин +20,0

Цистеин -1,2 5,0 121 Умеренно гидрофильные

3. Ароматические Треонин* +4,9

Тирозин +6,1 5,7 181 Серин +5,1

Триптофан* +5,9 5,9 204 Триптофан* +5,9

Фенилаланин* +0,8 5,5 165 Пролин +6,0

4. Оксиаминокислоты Тирозин +6,1

Серин +5,1 5,7 105 Высокогидрофобные

Треонин* +4,9 5,6 119 Цистеин -1,2

5. Дикарбоновые (кислые) Метионин* -1,5

Аспарагиновая кислота +11,0 2,8 133 Аланин -1,9

Глютаминовая кислота +10,2 3,2 147 Валин* -2,0

6. Амиды дикарбоновых кислот Изолейцин* -2,2

Аспарагин +9,7 5,4 132 Лейцин* -2,3

Глютамин +9,4 5,7 146 Глицин -2,4

7. Диаминоаминокислоты (основные) Фенилаланин* +0,8

Аргинин +20,0 10,9 174

Гистидин +10,3 7,6 155

Лизин* +15,0 9,7 146

8. Иминокислота

Пролин +6,0 6,3 115

о

СО

Примечание: * — незаменимые аминокислоты.

сэ

о

Биосинтез Ь-аминокислот в клетках организма происходит с помощью стереоспецифических ферментов, которые имеют асимметричные активные центры. При химическом синтезе аминокислот с одинаковой скоростью образуются как Б-, так и Ь-стереоизомеры. В результате получается рацемическая (одинаковая по составу) смесь разных стереоизомеров аминокислот. Рацемическую смесь аминокислот можно разделить на Б- и Ь-стереоизомеры, но это дорого. Поэтому полученные искусственным путем препараты аминокислот могут содержать не только необходимые организму Ь-аминокислоты, но и Б-стереоизомеры. Полные гидролизаты белков будут содержать только Ь-стереоизомеры аминокислот. В природе встречаются и некоторые Б-аминокислоты, которые входят в состав пептидных антибиотиков и клеточных стенок бактерий [1].

По химической структуре можно выделить 8 классов аминокислот (табл. 1):

1. Алифатические аминокислоты (аланин, ва-лин, глицин, изолейцин и лейцин) отличаются тем, что их боковые цепи содержат лишь атомы углерода и водорода.

У валина, изолейцина и лейцина боковая цепь разветвляется, их еще называют аминокислотами с разветвленной цепью.

2. Серосодержащие аминокислоты (метионин и цистеин) содержат атомы серы. При этом место серы может занимать атом селена.

3. Ароматические аминокислоты (тирозин, триптофан и фенилаланин) содержат ароматические циклические группы.

4. Оксиаминокислоты (серин и треонин) содержат -ОН-группы.

5. Дикарбоновые аминокислоты (аспарагино-вая и глютаминовая кислоты) содержат две карбоксильные группы

6. Амиды дикарбоновых аминокислот (аспа-рагин и глютамин) содержат атом азота в составе второй карбоксильной группы.

7. Диамино-, или двуосновные, аминокислоты (аргинин, гистидин и лизин) содержат две аминогруппы.

8. «Аминокислота» пролин занимает особое положение, поскольку, аминокислотой не является. По своей структуре это иминокислота и включает циклическое имидазольное кольцо. Благодаря циклической группе пролин вызывает изгибы в полипептидной цепочке белка, что очень важно, например, для структуры белка соединительной ткани коллагена, где пролина очень много.

Благодаря наличию карбоксильной и аминогруппы в водных растворах все аминокислоты ионизированы и ведут себя одновременно как кислоты и как основания. В водной среде организма свободные аминокислоты играют роль буферных веществ, стабилизируя рН среды. При этом растворимость в воде и степень гидрофильности разных аминокислот существенно различается. По степени

гидрофильности — способности связывать молекулы воды аминокислоты можно разделить на [2]:

1. Высокогидрофильные: аспарагин, аспара-гиновая кислота, аргинин, гистидин, глютамин, глютаминовая кислота и лизин, которые почти всегда располагаются на внешней поверхности молекул белка.

2. Умеренно гидрофильные: пролин, серин, тирозин, треонин и триптофан. Они занимают промежуточное положение, отличаясь определенной гидрофильностью.

3. Гидрофобные: аланин, валин, глицин, изо-лейцин, лейцин, метионин, цистеин и фенилала-нин, которые располагаются в основном внутри молекул белка.

Гидрофильность аминокислот во многом зависит от их полярности, которая связана с величиной заряда их боковых групп. Пять алифатических аминокислот (аланин, валин, глицин, изолейцин и лейцин) содержат слабо полярные боковые группы. Слабую полярность имеют серосодержащие аминокислоты (метионин и цистеин), а также одна из ароматических аминокислот — фенилаланин. Благодаря гидрофобности эти аминокислоты плохо растворяются в воде. Остальные аминокислоты содержат заряженные положительно полярные боковые группы и поэтому они более гидрофильны и хорошо растворяются в воде. Полярность аминокислот оказывают существенное влияние на структуру белка, его свойства и функции. Следует подчеркнуть, что большинство гидрофобных аминокислот являются незаменимыми (валин, изолейцин, лейцин, метионин и фенилаланин). Две других незаменимых аминокислоты (треонин и триптофан) отличаются умеренной гидрофильностью.

Онкотическое давление. Гидрофобные аминокислоты, как правило, располагаются внутри молекулы белка, тогда как гидрофильные — на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка. Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток. Гидрофильность белков крови обеспечивают онкотическое давление, которое удерживает жидкость в кровеносных сосудах. При уменьшении содержания белка в организме человека в первую очередь уменьшается количество плазменных белков, что приводит к снижению он-котического давления крови, выходу жидкости из кровеносной системы в межклеточное пространство, что может приводить к возникновению безбелковых (голодных) отеков. Гидрофильность пищевых белков обеспечивает их способность набухать, образовывать студни, эмульсии и пены. Гидрофильность белков клейковины злаков определяет качество зерна и его хлебопекарные свойства.

Нестандартные аминокислоты в составе белка. Кроме 20 стандартных аминокислот, которые присутствуют почти во всех белках, существуют так называемые нестандартные аминокислоты, которые

встречаются лишь в некоторых из них. Причем, каждая из этих аминокислот представляет собой производное одной из обычных. К нестандартным аминокислотам относят: производное пролина — 4-гидроксипролин и 5-гидроксипролин. Обе аминокислоты входят в состав коллагена. В мышечном белке миозине присутствует производное лизина — Nметиллизин. Другое производное лизина — аминокислота десмозин (комплекс из четырех молекул лизина — тетрапептид) содержится только в фибриллярном белке соединительной ткани — эластине. В белке протромбине, а также в некоторых других белках, которые активно связывают ионы кальция, присутствует у-карбоксиглютаминовая кислота.

Особо следует остановиться на серосодержащей аминокислоте цистеине. Она может находиться в составе белка в двух формах: либо в форме цисте-ина, либо в форме дипептида — цистина, который представляет собой комплекс из двух молекул ци-стеина, ковалентно связанных друг с другом при помощи дисульфидного мостика. Благодаря этому свойству цистеин выполняет важную функцию по стабилизации структуры белковой молекулы. Цистеин играет ключевую роль в формировании инсулина и иммуноглобулинов (антител). В этих белках благодаря дисульфидным цистеиновым мостикам соединяются разные полипептидные цепи в одну молекулу белка. Такие поперечные связи обычно отсутствуют во внутриклеточных белках, но широко представлены в секреторных белках. Разрушение дисульфидных связей в кератине, формирующем структуру волос, лежит в основе процесса химической завивки. Для этого используют тиоловые соединения, под действием которых происходит разрыв поперечных дисульфидных связей в кератине. После укладки волос действие кислорода воздуха приводит к образованию новых поперечных связей, которые закрепляют новую форму волос.

Функциональная классификация аминокислот. С физиологических позиций аминокислоты можно разделить на:

• Протеиногенные, которые входят в состав белка (20 аминокислот), и непротеиногенные, не входящие в состав белка, но выполняющие в организме человека другие важные функции.

• Заменимые (8 аминокислот) и незаменимые (12 аминокислот). О них мы будем говорить ниже.

• Глюкогенные, которые превращаются в глюкозу и далее в гликоген или расщепляются по пути метаболизма глюкозы с образованием АТФ. Глюкогенными, в той или иной степени, являются подавляющее большинство — 19 аминокислот, за исключением лейцина.

• Кетогенные, которые могут превращаться в кетоновые тела (короткоцепочечные жирные кислоты). Кетогенными являются 6 аминокислот: изолейцин, лейцин, лизин, тирозин, триптофан и фенилаланин.

АМИНОКИСЛОТЫ КАК ИСТОЧНИКИ ЭНЕРГИИ

Известно, что при полном окислении 1 г белка (или смеси аминокислот) в калориметрической бомбе в среднем образуется 5,65 ккал. Углерод аминокислот окисляется до СО2, водород — до Н2О, а азот — до NО2. Однако в организме человека энергию в форме АТФ можно получить только при окислении углеводородной составляющей аминокислот. Поэтому из 5,65 ккал организму будут доступны только 4,3 ккал, а оставшаяся часть (1,3 ккал) является энергией окисления азота. В настоящее время установлено, что действительная энергетическая ценность белка колеблется от 1,82 до 4,27 ккал/г, однако за эталон принимают цифру 4,0 ккал/г [4]. Существенные различия в энергетической ценности белка связаны, с одной стороны, с различной молекулярной массой аминокислот, а с другой — с разными путями и механизмами их окислительного метаболизма (рис. 2).

Считают, что белки (аминокислоты) могут обеспечить 11-14% энергии суточного рациона. Например, при суточной калорийности в 2500 ккал на белок может приходиться 275-350 ккал, что должно соответствовать 69-88 г белка. Однако все пищевые аминокислоты не могут полностью окисляться с образованием энергии.

2

го

1

I

ГЛЮКОЗА

ГЛИКОГЕН

фосфоенолпируват

оксалоацетат

Пируват

аминокислоты

Ацетил-КоА

I

ЦИТРАТНЫЙ ЦИКЛ сукцинил КоА, кетоглутарат, фумарат, оксалоацетат

ДЫХАТЕЛЬНАЯ ЦЕПЬ

ЭНЕРГИЯ

Рис. 2. Пути метаболизма глюкогенных аминокислот

о

неодинакова: одни из них могут превращаться в глюкозу и далее в гликоген, тогда как другие, минуя глюкозу, могут непосредственно окисляться до СО2 и Н2О с образованием АТФ.

Установлено, что из 100 г аминокислот может образовываться только 57 г глюкозы. При голодании в первые 3-4 дня из аминокислот в среднем в сутки образуется около 41 г глюкозы, а спустя несколько недель голодания образование глюкозы снижается до 16 г в сутки. При сахарном диабете 2-го типа превращение глюкогенных аминокислот в глюкозу происходит с гораздо большей скоростью, чем у здоровых людей [5]. Как следствие этого у больных диабетом с мочой выводится большое количество мочевины, которая образуется при дезаминировании глюкогенных аминокислот. В критических состояниях скорость глюконеогенеза с использованием аминокислот также существенно возрастает.

Среди аминокислот наиболее эффективно превращаются в глюкозу серин, аланин и пролин, тогда как глютамин, который широко используется в энтеральном и парентеральном питании, стоит на четвертом месте (табл. 3).

Важную роль в процессах глюконеогенеза играет так называемый цикл аланина, который характерен для мышечной ткани (рис. 3). При дефиците глюкозы в организме или при голодании усиливается катаболизм мышечных белков с освобождением свободных аминокислот, около 50% которых составляет аланин [2]. Аланин поступает в печень, где из него образуется пируват, который включается в глюконеогенез. Когда в мышечной ткани возобновляется биосинтез белка, возникает потребность в аланине, который начинает синтезироваться из пирувата. В свою очередь источником пирувата является глюкоза, из которой он образуется в результате гликолиза. Таким образом, аланин завершает свой кругооборот:

НЕЗАМЕНИМОСТЬ АМИНОКИСЛОТ

Говоря о значении различных аминокислот для организма человека, необходимо рассмотреть понятие незаменимости. Основным критерием в определении биологической ценности аминокислот является их способность поддерживать рост животных и человека, что связано с биосинтезом белка в организме. Исключение из пищевого рациона хотя бы одной из таких аминокислот, при сохранении содержания остальных, влечет за собой задержку роста и снижение массы тела растущего организма. Поэтому незаменимыми аминокислотами считают такие, которые «либо не синтезируются в организме, или синтезируются со скоростью, недостаточной или не соответствующей обмену веществ,

S Lr

обеспечивающих пластические и регенера- sj

тивные процессы, связанные с образованием ц

новых клеток и тканей» [6]. <

Согласно классическим исследованиям Rose, для взрослого здорового человека жизненно необходимыми являются 8 аминокислот, которые стали считать незаменимыми (табл. 4). Полагают, что эти аминокислоты не образуются в организме человека и обязательно должны поступать с пищей.

Остальные 12 аминокислот считают заменимыми. К ним относят: аланин, аргинин, аспарагин, аспарагиновую кислоту, гистидин, глицин, глютамин, глютами-новую кислоту, пролин, серин, тирозин и цистеин. Эти аминокислоты, как полагают,

катаболизм белка t! глюконеогенез

БЕЛОК аланин пируват ГЛЮКОЗА

анаболизм белка МЫШЕЧНАЯ ТКАНЬ гликолиз ПЕЧЕНЬ

Рис. 3. Цикл аланина Таблица 2

СУДЬБА ГЛЮКОГЕННЫХ АМИНОКИСЛОТ [5]

Аминокислоты Превращаются в: Результат

Аланин, глицин, серин, треонин, цистеин Пируват Глюкоза/АТФ

Аспарагин, аспарагиновая кислота Оксалоацетат Глюкоза/АТФ

Валин, изолейцин, метионин, триптофан Сукцинил-КоА АТФ

Аргинин, гистидин, глутамин, глутаминовая кислота, пролин Кетоглутарат АТФ

Аспарагиновая кислота, тирозин, фенилаланин Фумарат АТФ

Таблица 3

СКОРОСТЬ ГЛЮКОНЕОГЕНЕЗА В ПЕЧЕНИ ИЗ РАЗЛИЧНЫХ ПРЕДШЕСТВЕННИКОВ [5]

Предшественник Образование глюкозы мк моль/мин г ткани Предшественник Образование глюкозы, мкмоль/мин г ткани

Фруктоза 2,68 Глутамин 0,45

Диоксиацетон 2,07 Треонин* 0,40

Лактат 1,06 Глутамат 0,31

Пируват 1,02 Аргинин 0,27

Серин 0,98 Аспартат 0,23

Аланин 0,66 Изолейцин* 0,22

Пролин 0,55 Орнитин 0,19

Глицерин 0,48 Валин* 0,12

Примечание: * — незаменимые аминокислоты.

m

о

способны синтезироваться в организме человека в достаточном количестве. Наряду с этим выделяют группу аминокислот, которые необходимы человеку в определенные периоды развития и в некоторых физиологических и клинических ситуациях. Эти аминокислоты относят к условно незаменимым (табл. 5).

Другим критерием значимости и биологической ценности аминокислот считают степень их участия в обеспечении азотистого равновесия. Имеются данные о целесообразности выделения третьей группы аминокислот, обладающих свойствами ускорять рост. К их числу относят 7 аминокислот: аргинин, глютаминовую кислоту, пролин, серин, тирозин, триптофан и цистеин.

Заслуживает внимание классификация аминокислот, предложенная Josue de Castro, который разделил их на две группы. В первую группу вошли 5 аминокислот, обеспечивающие рост: аргинин, гистидин, лизин, пролин и цистеин. Во вторую — другие 5 аминокислот, которые необходимы для регенерации тканей: аспарагиновая и глютаминовая кислоты, тирозин, триптофан и фенилаланин [6].

А.Э. Шарпенак относил к незаменимым 12 аминокислот: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, тирозин, треонин, триптофан, фенилаланин и цистеин. По данным Eagle, для культивирования клеток животных и человека необходимы те же 12 аминокислот, но с заменой треонина на глютамин [6].

Таблица 4

НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ [6]

Автор Rose Условно незаменимые Ускоряют рост Jose de Castro А.Э. Шарпенак Eagle, 1958

Число 8 6 7 10 12 12

Валин Аспартат Аргинин Рост Аргинин Аргинин

Изолейцин Гистидин Глютамат Аргинин Валин Валин

Лейцин Глютамин Пролин Гистидин Гистидин Гистидин

ЛИЗИН* Таурин Серин Лизин Изолейцин Изолейцин

Метионин Тирозин Тирозин Пролин Лейцин Лейцин

Ами- ТРЕОНИН* Цистеин Триптофан Цистеин Лизин Лизин

лоты Триптофан Цистеин Регенерация Метионин Метионин

Фенилаланин Аспартат Тирозин Тирозин

Абсолютно Глютамат Треонин Глютамин

заменимые Тирозин Триптофан Триптофан

ГЛЮТАМАТ Триптофан Фенилаланин Фенилаланин

СЕРИН Фенилаланин Цистеин Цистеин

Примечание: * — абсолютно незаменимые аминокислоты.

Таблица 5

ФУНКЦИИ УСЛОВНО НЕЗАМЕНИМЫХ АМИНОКИСЛОТ

Аминокислота Функции в организме

Аспартат Необходим для процессов регенерации

Гистидин Необходим для маленьких детей, у которых эндогенный синтез недостаточен

Глютамин Необходим для процессов регенерации, является важным энергетическим субстратом в критических состояниях

Таурин Необходим для новорожденных, у которых эндогенный синтез недостаточен, а также для больных в критических состояниях. Дефицит возникает при недостатке метионина и цистеина

Тирозин Необходим для маленьких детей, у которых эндогенный синтез недостаточен. При нарушении функции почек снижено образование тирозина из фенилаланина

Цистеин Необходим для маленьких детей, у которых эндогенный синтез недостаточен. Дефицит возникает при недостаточном содержании метионина в питании. Крайне необходим при нарушениях функции печени и для больных в критических состояниях

В основе разноголосицы в определении важности и незаменимости тех или иных аминокислот лежат особенности их биосинтеза и метаболизма в организме человека. За исключением двух аминокислот — лизина и треонина, которые являются у человека абсолютно незаменимыми, остальные «незаменимые» аминокислоты в определенных количествах могут синтезироваться за счет реакций трансаминирования, но объем их синтеза является недостаточным.

Ряд незаменимых аминокислот являются предшественниками для синтеза заменимых. Например, из незаменимой аминокислоты фенилаланина синтезируется заменимая аминокислота тирозин, а из незаменимого метионина — заменимый цистеин. Установлено, что до 80-89% метионина может трансформироваться в цистеин, а 70-75% фенилаланина — в тирозин [2]. По этой причине незаменимых аминокислот метионина и фенилаланина требуется больше, так как существенная их часть должна расходоваться на образование цистеина и тирозина. Аминокислоты цистеин и тирозин по своему физиологическому значению близки к незаменимым аминокислотам, к которым их относили ранее. Таким образом, поступление с пищей цистеина и тирозина позволяют сократить потребность в незаменимых аминокислотах мети-онине и фенилаланине.

С метаболических позиций абсолютно заменимыми являются глютаминовая кислота и серин, которые в необходимых количествах синтезируются из кетокислот. Биосинтез остальных «заменимых» аминокислот в организме человека ограничен. По этой и другим причинам полностью обеспечить потребность организма только за счет биосинтеза большинства заменимых аминокислот невозможно. Важно подчеркнуть, что потребность организма в белке, а, стало быть, в аминокислотах — есть величина переменная, которая изменяется на протяжении жизни и может резко возрастать при очень многих физиологических и патологических состояниях.

Подводя итог спорам о важности и незаменимости тех или иных аминокислот, следует подчеркнуть:

• Во-первых, ценность тех или иных аминокислот определяется возможностью их биосинтеза в организме. При этом часть незаменимых аминокислот может синтезироваться в организме, но объем их биосинтеза недостаточен. Разумеется, те аминокислоты, которые ни при каких условиях не образуются в организме и являются абсолютно незаменимыми, должны непрерывно поступать с пищей. Возможности запасания и резервирования лимитирующих аминокислот в составе мышечных белков, альбумина или других белков ограничены.

• Во-вторых, некоторая часть незаменимых аминокислот, помимо пищи, может образовываться при микробиологическом синтезе кишечной микрофлорой и поступать во внутреннюю среду организма.

• В-третьих, физиологическая потребность в незаменимых аминокислотах есть величина переменная и может изменяться в зависимости от активности процессов анаболизма и катаболизма белка, которые, в свою очередь, зависят от уровня физической активности, особенностей обмена веществ, состояния здоровья.

• В-четвертых, обеспечение организма белком и незаменимыми аминокислотами зависит не только от качества, но и режима питания, а также от содержания других компонентов пищевого рациона, например, углеводов. Заменимые аминокислоты занимают

достаточно большой удельный вес в составе белков пищи — до 2/3 суммы аминокислот. В организме человека они выполняют весьма важные функции, причем многие из них играют не меньшую роль, чем незаменимые аминокислоты. Следует подчеркнуть, что хотя заменимые аминокислоты могут образовываться в организме, однако за счет эндогенного биосинтеза обеспечивается лишь минимальная потребность организма. Более того, установлено, что при небольшом потреблении белка в том случае, когда потребность в незаменимых аминокислотах удовлетворяется полностью, лимитирующими становятся заменимые аминокислоты I II [6]. Для обеспечения стабильного азотистого равновесия в организме необходимо примерно в 2 раза больше качественного белка, чем для того, чтобы закрыть потребность в незаменимых аминокислотах. Таким образом, хотя заменимые аминокислоты не являются лимитирующим фактором в белковом питании, но их присутствие в питании также является обязательным. Поступление достаточного количества заменимых аминокислот в составе белков пищи является тем путем, с помощью которого можно обеспечить их оптимальную физиологическую потребность, более легкое и быстрое использования для нужд организма.

ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ОТДЕЛЬНЫХ АМИНОКИСЛОТ

В организме человека аминокислоты, помимо строительства белковых молекул, выполняют еще целый ряд важных функций:

• Участвуют в образовании других аминокислот.

• Входят в состав разных природных соединений — коферментов, желчных кислот, антибиотиков.

• Участвуют в образовании гормонов, медиаторов и нейротрансмиттеров.

• Являются источниками метаболитов, принимающих участие в обмене веществ.

К числу медиаторов относятся некоторые аминокислоты (глютаминовая и аспарагиновая кислоты, глицин и дофа), а также биогенные амины.

1-Л

о

<3

о

Биогенные амины образуются при отщеплении от аминокислот карбоксильной группы (реакция декарбоксилирования). К их числу относятся: у-аминомасляная кислота, дофамин, норадреналин, адреналин, серотонин, гистамин. Из триптофана через промежуточный продукт 5-гидрокситриптофан образуется нейромедиатор серотонин. Из глютамино-вой кислоты образуется у-аминомасляная кислота.

Гистамин — важнейший медиатор и нейромедиатор, образуется в основном в тучных клетках и нейтрофильных лейкоцитах и участвует в развитии аллергических и воспалительных реакций. При аллергических реакциях высвобождение гистамина происходит под действием аллергенов, лекарств, некоторых тканевых гормонов. В ЦНС гистамин действует как нейромедиатор. Важным системным эффектом гистамина является расширение кровеносных сосудов, снижение артериального давления и частоты сердечных сокращений. Гистамин также стимулирует секрецию соляной кислоты.

Таблица 6

Адреналин — гормон коры надпочечников, где он образуется из аминокислоты тирозина. Адреналин является ключевым гормоном стресса — «аварийным гормоном» и действует на обмен веществ и сердечно-сосудистую систему: повышает сердечную функцию; сужает сосуды, повышая артериальное давление; расширяет бронхи, увеличивая снабжение кислородом; ускоряет расщепление гликогена до глюкозы, обеспечивая энергией мышечную ткань.

Катехоламины — группа биогенных аминов, которые содержат в качестве общего фрагмента производное фенилаланина — катехол. Все эти вещества берут свое начало от аминокислоты тирозина, из которой первоначально образуется аминокислота дофа (3,4-дигидроксифенилаланин). При ее декар-боксилировании образуется дофамин, который в дальнейшем может превращаться в норадреналин и далее в адреналин. Адреналин выполняет функции, как медиатора, так и гормона [2].

ПРОДУКТЫ МЕТАБОЛИЗМА И СПЕЦИФИЧЕСКИЕ ФУНКЦИИ ОТДЕЛЬНЫХ АМИНОКИСЛОТ [8]

Аминокислота Метаболиты аминокислот Физиологическая функция

Аргинин Образования N0 Креатин Полиамины Молекулярный биорегулятор Предшественник креатинфосфата Экспрессия генов

Аспарагиновая кислота Основа нуклеотида пиримидина Входит в состав нуклеотидов и нуклеиновых кислот

Гистидин Гистамин Нейромедиатор, медиатор воспаления, стимуляция секреции соляной кислоты

Глицин Основа нуклеотида пурина Порфирин Креатин Гиппуровая кислота Гликохолевая желчная кислота Входит в состав нуклеотидов и нуклеиновых кислот Входит в состав гемоглобина и цитохрома Предшественник креатинфосфата Связывание токсических соединений — детоксикация Эмульгирование липидов

Глютаминовая кислота Глютамин у-аминомасляная кислота Транспорт азота в организме, важный источник энергии, предшественник глутатиона Нейромедиатор

Лизин Гидроксилизин Карнитин Составная часть коллагена Транспорт жирных кислот в клетке

Метионин Холин Составная часть фосфолипидов

Серин Этаноламин Холин-ацетилхолин Составная часть фосфолипидов Нейромедиатор

Тирозин Норадреналин-адреналин Тироксин Меланин Нейромедиатор, гормон Гормон щитовидной железы Пигмент кожи и волос

Триптофан Серотонин Никотиновая кислота Нейромедиатор Витамин, составная часть пуриновых нуклеотидов, NAD и NADH

Цистеин Таурин Таурохолевая желчная кислота Антиокислительная активность Предшественник глутатиона

В процессе обмена веществ отдельные аминокислоты превращаются в метаболиты, которые выполняют важные функции в организме человека.-имидазолилпролиновая кислота) выделен в 1896 году. В значительном количестве содержится в гемоглобине, а также входит в состав карнозина и ансерина. По этой причине недостаток гистидина приводит к снижению уровня гемоглобина. Гемоглобин является одним из резервов гистидина в организме и при недостатке гистидина происходит повышенное разрушение гемоглобина, в результате которого высвобождается гистидин. При декарбоксилировании гистидина образуется гистамин. В ряде продуктов при их хранении, например в рыбе и сыре, происходит микробиологическое декарбоксилирование гисти-дина с образованием и накоплением больших количеств гистамина, что может иметь клинические последствия.

Лейцин (а-аминоизокапроновая кислота) впервые получен из сыра в 1819 году. Его много в составе белка (в среднем 10%). При недостатке лейцина в

Таблица 7

питании у детей происходит задержка роста и снижение массы тела, отмечают изменения в почках и щитовидной железе.

Лизин (а,е-диаминокапроновая кислота) выделен в 1889 году из казеина. Недостаточное содержание лизина в широко распространенных зерновых продуктах и сравнительно высокая потребность в нем организма (3-5 г в сутки) делают его одной из наиболее важных незаменимых аминокислот. Его недостаток в питании приводит к уменьшению числа эритроцитов и снижению гемоглобина, возникают дистрофические изменения в мышцах, в печени и в легких, нарушается кальцификация костей. Наиболее богат лизином мышечный белок — миозин, а также гемоглобин.

Метионин (а-амино-у-метилтиомасля-ная кислота) впервые был выделен в 1922 году из казеина. Метионин относится к серосодержащим аминокислотам и играет исключительно важную роль в обмене веществ и в процессах метилирования и трансметилирования. Метионин является основным донатором метильных групп. В процессе деметилирования метионина образуется гомоцистеин. Метильные группы метионина используются для синтеза хо-лина, который участвует в обмене липидов. Метионин, также как и холин, относится к липотропным веществам, оказывая влияние на обмен липидов и фосфолипидов, он важен в профилактике атеросклероза. При высоком уровне метионина наиболее полно проявляется

I

ФУНКЦИИ И ПРИЗНАКИ НЕДОСТАТОЧНОСТИ НЕЗАМЕНИМЫХ АМИНОКИСЛОТ [6]

Аминокислота Функция Признаки недостаточности

Валин Легко переаминируется и теряется, восстанавливает мышцы после физической нагрузки Гипертензия, атаксия

Гистидин Синтез фолиевой кислоты, нуклеиновых кислот, гемоглобина и карнозина, важна при уремии, усиливает секрецию соляной кислоты и пепсина Анемия, нехватка карнози-на, нарушение умственного развития у детей

Изолейцин Много в составе иммуноглобулинов, ключевая роль в утилизации пищи Потеря массы тела, высокий диурез

Лейцин Активирует эндокринную систему, важная роль для иммунной системы Задержка роста и физического развития

Лизин Содержится во всех белках, обеспечивает рост костной ткани, стимулирует митозы, поддерживает половую функцию у женщин, снижает уровень триглицеридов, противовирусное действие Головная боль, тошнота, снижение слуха, медленный рост костной ткани

Метионин Защита печени, детоксикация организма, защита от токсикоза беременных, антиоксидантное действие, синтез гемоглобина, функция щитовидной железы, рост Ожирение, цирроз печени, анемия, кровотечения, атрофия мышц

Треонин Усвоение пищевого белка, липотропное действие, обмен коллагена и эластина, повышает иммунитет Потеря веса, высокий диурез

Фенилала-нин 50% идет на синтез белка, синтез адреналина и тирозина, умственная активность, память, улучшает работу печени и поджелудочной железы Нарушение функции щитовидной железы и надпочечников, гипотония

г^.

о

СО

о

биологическое действие витамина В и фолиевой кислоты. В свою очередь эти витамины стимулируют деметилирование метионина и образование холина. Метионин играет важную роль в функции надпочечников, он необходим для синтеза адреналина. Имеются данные о профилактическом действии метионина при лучевых поражениях и бактериальной интоксикации.

Треонин (а-амино-в-оксимасляная кислота) получен в 1935 году из фибрина. Дефицит треонина вызывает задержку роста и снижение массы тела.

Триптофан (а-амино-в-индолилпропионовая кислота) выделен в 1901 году. Важнейшая из незаменимых аминокислот необходим для роста и поддержания азотистого равновесия, участвует в биосинтезе белков сыворотки крови и гемоглобина. Триптофан играет важную роль в образовании никотиновой кислоты (витамина РР).

Фенилаланин (а-амино-в-фенилпропионовая кислота) выделен в 1879 году. Фенилаланин регулирует функцию щитовидной железы и надпочечников. Из него образуется гормон тироксин, а также аминокислота тирозин, из которого, в свою очередь, образуется адреналин. Тирозин может образовываться из фенилаланина, однако обратного образования фенилаланина из тирозина не происходит.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ЗАМЕНИМЫХ АМИНОКИСЛОТ

Аргинин (амино-$-гуанидин валериановая кислота) открыт в 1886 году. Играет очень важную роль в обмене веществ. Белки ядер сперматозоидов содержат до 80% аргинина. Аргинин является предшественником оксида азота (N0), который является важным молекулярным биорегулятором. Введение аргинина приводит к расширению сосудов и существенному снижению артериального давления при гипертонической болезни. Регулярное назначение аргинина способствует улучшению клинического состояния больных ишемической болезнью сердца. Помимо этого он снижает вязкость крови и уменьшает риск тромбоза сосудов. При физической нагрузке аргинин способствует улучшению кровотока в коронарных артериях. Аргинин ускоряет регенерацию печени при ее токсическом поражении и может применяться при лечении цирроза печени и жирового гепатоза. Ингаляционное назначение аргинина при муковис-цидозе приводит к быстрому улучшению функции легких, он помогает при астматическом бронхите.

Известно, что аргинин стимулирует активность Т-лимфоцитов, предотвращает возрастное угнетение фагоцитоза макрофагами. Неспецифическая стимуляция иммунной функции аргинином сопровождается снижение частоты рака толстой кишки и молочной железы у экспериментальных животных. Назначение аргинина больным сахарным диабетом 2-го типа существенно повышает чувствительность к инсулину рецепторов клеток организма. У пациентов

с сахарным диабетом он ингибирует гликозилиро-вание гемоглобина, снижая развитие осложнений. У лиц с повышенной физической нагрузкой аргинин усиливает действие инсулина и увеличивает рост кровеносных капилляров в скелетных мышцах. Аргинин стимулирует выработку соматотропного гормона (гормона роста), способствует уменьшению жировых отложений, росту мышечной массы, увеличивает активность и физическую выносливость, улучшает настроение. Он повышает половую функцию, увеличивают выработку сперматозоидов.

Аргинин не рекомендуют беременным и кормящим женщинам, больным шизофренией. Он может стимулировать свободнорадикальные процессы, поэтому его следует принимать в сопровождении антиоксидантов.

Глицин (аминоуксусная кислота) — наиболее простая из аминокислот, в большом количестве содержится в клетках головного и спинного мозга. Он является метаболитом широкого спектра действия, специфическим регулятором активности нервных клеток, тормозным медиатором. Глицин способен связывать различные эндогенные и экзогенные (лекарства) соединения. В настоящее время его применяют как успокаивающее (седативное) средство, он улучшает мозговую функцию. Менее известна его способность нормализовать синтез коллагена и соединительной ткани.

Глютамин (8-амид-а-аминоглутаровая кислота) — самая распространенная свободная аминокислота в организме человека (в мышечной ткани содержание свободного глютамина составляет 67%). Очень активно обменивается в организме и является наиболее важной для переноса азота в печень и другие органы. Однако содержание глютамина в составе белка сравнительно небольшое — 5-7% (на лейцин приходится 10%). Глютамин является важным энергетическим субстратом для клеток печени, эпителиальных клеток тонкой кишки и иммунных клеток. Введение глютамина тяжелым больным ослабляет потерю мышечной массы улучшает функцию всасывания. Наличие глютамина является необходимым условием синтеза нуклео-тидов — пиринов и пиримидинов.

Глютамин играет ключевую роль в регуляции синтеза глутатиона — трипептида, состоящего из глютаминовой кислоты, цистеина и глицина. Глутатион является важнейшим эндогенным анти-оксидантом и защищает клетки от окислительного повреждения. Потребность в глютамине возрастает при окислительном стрессе.

Глютаминовая кислота (аминоглютаровая кислота) выделена в 1866 году из эндосперма пшеницы. Глютаминовая кислота играет активную роль в обмене белка и в удалении из организма продуктов распада. Глютаминовая кислота является единственной аминокислотой, поддерживающей дыхание клеток головного мозга. Аминокислоту применяют при лечении некоторых нервных и психических заболеваний. Глютаминовая кислота

участвует в поддержании кислотно-щелочного го-меостаза в крови и тканях.

Пролин (пирролидин-а-карбоновая кислота) — способствует заживлению ран, укрепляет сухожилия, связки и суставы, увеличивает физическую работоспособность, укрепляет сердечную мышцу.

Тирозин (а-амино-в-параоксифенилпропионовая кислота) — способствует функционированию щитовидной железы (синтез тироксина), гипофиза, надпочечников, снижает раздражительность, усталость, стресс, укрепляет сон.

Цистеин (ди-а-амино-в-тиопропионовая кислота) — способствует заживлению ожогов и ран, регенерации кожи, активирует иммунную систему, обладает антиоксидантной активностью.

ПОТРЕБНОСТЬ В АМИНОКИСЛОТАХ

Физиологическая потребность в аминокислотах окончательно не установлена. Проведенные исследования позволили выявить ориентиры потребности в незаменимых аминокислотах, отражающие минимальную потребность, «безусловно достаточное количество» и минимальные показатели суточной потребности [6]. Считают, что может быть «только один уровень физиологической потребности в незаменимых аминокислотах для здорового человека, хотя этот уровень для разных людей и в разное время может быть различным». ФАО/ВОЗ предложил в качестве идеального белка аминокислотную шкалу, в которой представлены незаменимые аминокислоты в расчете на 100 г стандартного белка. Однако данная шкала далека от идеального белка, о чем мы будем говорить ниже.

Поскольку заменимые аминокислоты могут образовываться в организме, определение их физиологической потребности также непросто. В 2004 году в РФ предложены (на основе расчета) значения адекватного и верхнего уровня потребности для заменимых и незаменимых аминокислот, табл. 9.

Как видно из таблицы, в 2004 году по сравнению с 1971-м суточная потребность примерно для половины аминокислот была пересмотрена как в сторону повышения (аспарагиновая кислота, серин и аланин), так и в сторону снижения (фенилаланин, валин, метионин, триптофан и глютами-новая кислота). При этом суточная потребность в заменимых аминокислотах выше (в 2,5 раза), чем в незаменимых, и в настоящее время составляет 56,9 г/сутки (72%), против 22,6 г/сутки (28%) для незаменимых аминокислот. В соответствии с современными нормами потребности среди незаменимых аминокислот доминируют: лейцин, фенилаланин и лизин, тогда как среди заменимых: глютамин (включая глютамат), аспарагин (включая аспартат) и серин. Следует подчеркнуть, что в соответствии с нормами потребности заменимых аминокислот должно быть в 2-2,5 раза больше, чем незаменимых.

Аминокислотный скор. Качество белка можно оценивать, сравнивая его аминокислотный состав с составом стандартного (идеального) белка. Такой расчет называют аминокислотным скором (оценкой). Аминокислотный скор определяют по формуле:

I

Таблица 8

ФУНКЦИИ И ПРИЗНАКИ НЕДОСТАТОЧНОСТИ ЗАМЕНИМЫХ АМИНОКИСЛОТ [6]

Аминокислота Функция Признаки недостаточности

Аргинин Образование мочевины, регулирует рост, тормозит рост опухолей за счет стимуляции иммунитета, детоксикация печени Нарушение роста, риск развития сахарного диабета, эректильная дисфункция

Глицин Синтез коллагена и соединительной ткани, седативное действие, нормализует мозговую функцию и сон, связывание аммиака. Увеличивает синтез лецитина Артрозы и артриты Повышенная возбудимость

Глютамин Переносчик аминных групп, важный энергетический субстрат для печени, тонкой кишки и иммунной системы, играет ключевую роль в регуляции синтеза глутатиона Быстрая потеря мышечной массы у больных, окислительный стресс

Пролин Синтез коллагена и соединительной ткани

Таурин Незаменим у детей, необходим в критических состояниях Нарушение развития мозга, миокарда, ЖКТ

Тирозин Синтез тироксина, пигмента кожи меланина, норадренали-на и адреналина Нарушение пигментации кожи

Триптофан Образование альбумина, выработка серотонина, снижает содержание жира, гипотензивное действие, синтез альбумина и глобулинов, гормона роста, антидепрессант, улучшает сон, снижает аппетит Анемия, стерильность, выпадение волос, депрессия, тревожность

Цистеин Процессы регенерации и заживления ожогов и ран Длительное заживление ран

о о

CD CD

(содержание аминокислоты данного белка (г/100 г) / содержание аминокислоты стандартного белка (г/100 г)) х 100.

Если в исследуемом белке содержание какой-либо аминокислоты будет менее 100%, то эта аминокислота окажется лимитирующей. Для взрослого человека в качестве идеального белка применяют шкалу ФАО/ВОЗ, в которой указано содержание каждой из незаменимых аминокислот в расчете на 100 г белка. Однако для человека и животных существует другие белки, которые в определенные периоды жизни являются единственным источником аминокислот для растущего организма. Среди белков животного происхождения к ним относятся белки молока и яйца. Среди растительных белков

Таблица 9

такими белками являются, например, белки сои, орехов, зародыша пшеницы и др. Сравним состав незаменимых аминокислот женского молока, который можно считать эталонным, с составом аминокислот известных животных (табл. 10) и растительных (табл. 11) белков [9].

Как видно из таблицы, состав незаменимых аминокислот женского молока является достаточно уникальным и не похожим как по составу, так и по соотношению аминокислот среди аналогичных по значимости белков коровьего молока и куриного яйца. В составе коровьего молока незаменимых аминокислот на 11% меньше, чем в женском молоке, в белке коровьего молока на 30% меньше валина, хотя метионина на 61% больше. Куриное яйцо по

РЕЙТИНГ ПОТРЕБНОСТИ ВЗРОСЛОГО ЧЕЛОВЕКА В АМИНОКИСЛОТАХ (г/сутки)

Аминокислоты А.Э. Шарпенак [6] Rous, Mesy, Block [6] ФАО/ВОЗ г/100 г белка [4] О.П. Молчанова, 1971 [6] Адекватный уровень (РФ, 2004) Верхний уровень (РФ, 2004)

Незаменимые

Лейцин 10,0*** 9,1 6,6 4-6 4,6 7,3

Фенилаланин 4,5 4,4 6,3* 2-4 4,4* 6,9*

Лизин 8,0 5,2 5,8 3-5 4,1 6,4

Валин 6,0 3,8 3,5 4,0 2,5 3,9

Треонин — 3,5 3,4 2-3 2,4 3,7

Изолейцин — 3,3 2,8 3-4 2,0 3,1

Метионин 2,5 3,8** 2,5** 2-4 1,8** 2,8**

Триптофан 1,6 1,1 1,1 1,0 0,8 1,2

Суммарно, г/сутки 32,6 34,2 32,0 26 22,6 35,3

% аминокислот 32% 34% 28% 28%

Заменимые

Глютамин + глютаминовая кислота 16,0 13,6 21,8

Аспарагин + аспарагиновая кислота 6,0 12,2 19,9

Серин 3,0 8,3 13,3

Аланин 3,0 6,6 10,6

Аргинин 6,0 6,1 9,8

Пролин 5,0 4,5 7,2

Глицин 3,0 3,5 5,6

Гистидин 2,0 2,1 3,4

Тирозин 3-4

Цистеин 2-3

Суммарно, г/сутки 68 50 56,9 91,6

% аминокислот 68% 66% 72% 72%

Сумма всех аминокислот 100 76 79,5 126,9

заменимые : незаменимые 2,12 1,92 2,5 2,6

Примечание:* — фенилаланин + тирозин; ** — метионин + цистеин; *** — лейцин + изолейцин.

Таблица 10

СРАВНИТЕЛЬНЫЙ СОСТАВ НЕЗАМЕНИМЫХ АМИНОКИСЛОТ ЖЕНСКОГО МОЛОКА

И ЖИВОТНЫХ БЕЛКОВ

Аминокислоты Женское молоко Коровье молоко Куриное яйцо Рыба Мясо ФАО/ВОЗ

Незаменимые г/100 г г/100 г % г/100 г % г/100 г % г/100 г % г/100 г %

Лейцин 10,2 9,7 95 9,2 90 9,1 89 8,7 85 6,6 65

Валин 9,9 6,9 70 7,3 74 6,1 62 5,9 60 3,5 35

Лизин 8,5 7,5 88 7,9 93 9,5 112 8,6 101 5,8 68

Изолейцин 7,6 6,2 82 8,0 105 6,0 79 4,5 59 2,8 37

Фенилаланин 5,9 5,7 97 7,3 124 4,8 81 4,5 76 6,3* —

Треонин 5,0 4,6 92 5,9 118 5,1 102 5,3 106 3,4 68

Метионин 2,3 3,7 161 4,1 178 2,6 113 3,2 139 2,5** —

Триптофан 1,9 1,6 84 1,5 79 0,8 42 1,2 63 1,1 58

Аргинин*** 5,0 4,3 86 6,5 130 8,1 162 6,5 130 — —

Гистидин*** 2,7 2,5 93 2,1 78 2,6 96 3,0 111 — —

Суммарно 51,3 45,9 89 51,2 100 44,0 86 41,9 82 32,0 62

Заменимые 48,7 54,1 48,8 56,0 58,1 68,0

Заменимые : незаменимые 0,94 1,18 0,95 1,27 1,39 2,13

Примечание: * — фенилаланин + тирозин; ** — метионин + цистеин; *** — заменимые аминокислоты.

Таблица 11

СРАВНИТЕЛЬНЫЙ СОСТАВ НЕЗАМЕНИМЫХ АМИНОКИСЛОТ ЖЕНСКОГО МОЛОКА

И РАСТИТЕЛЬНЫХ БЕЛКОВ

Аминокислоты Женское молоко Соевые бобы Овсяные хлопья Пшеничная мука Картофель

Незаменимые г/100 г г/100 г % г/100 г % г/100 г % г/100 г %

Лейцин 10,2 7,7 75 7,7 75 6,2 61 10* 56

Валин 9,9 5,3 54 5,3 54 4,3 43 4,0 40

Лизин 8,5 6,9 81 3,0 35 2,5 29 2,6 31

Изолейцин 7,6 5,8 76 5,3 70 3,1 41

Фенилаланин 5,9 5,0 85 4,6 78 4,8 81 6,4 108

Треонин 5,0 4,4 88 3,5 70 2,8 56 3,1 62

Метионин 2,3 1,3 57 1,2 52 1,2 52 1,5 65

Триптофан 1,9 1,3 68 1,3 68 1,3 68 0,6 32

Аргинин** 5,0 7,3 146 7,4 148 4,5 90 1,4 28

Гистидин** 2,7 2,5 93 2,0 74 2,0 74 0,6 22

Суммарно 51,3 37,7 73 31,9 62 26,2 51 28,2 55

Заменимые 48,7 62,3 68,1 73,8 71,8

Заменимые : незаменимые 0,94 1,65 2,13 2,82 2,55

Примечание: * — лейцин + изолейцин; ** — заменимые аминокислоты.

количеству незаменимых аминокислот и биологиче-Л ской ценности более всего приближено к женскому молоку, но соотношение незаменимых аминокислот ^ в белке куриного яйца совершенно иное. а белку женского молока, и кроме фенилаланина, ™ являются дефицитными практически по всем не° а__заменимым аминокислотам, особенно по лизину

(29-35%), валину (40-54%) и метионину (52-65%). Среди наиболее распространенных растительных белков, безусловно, лучшим является белок сои, который содержит существенно больше незаменимых аминокислот, чем другие растительные белки. Однако белок сои дефицитен по валину (54%), метионину (57%) и изолейцину (76%). Обращает на себя внимание доминирование в растительном белке заменимых аминокислот, которых больше чем незаменимых в 1,6-2,5 раза.

Сравнивая состав незаменимых аминокислот «идеального» белка ФАО/ВОЗ с белками женского или коровьего молока, а также яйца, можно увидеть, что последние отличаются принципиально иным составом и соотношением заменимых и незаменимых аминокислот близким к 1,0. Тогда как в «идеальном» белке ФАО/ВОЗ, а также в современных отечественных нормах это соотношение больше 2,0 (2,12-2,5), что характерно для белков растительного происхождения. Таким образом, по составу незаменимых аминокислот к идеальному белку наиболее близки белки яиц и молока. Белки рыбы

и мяса по содержанию аминокислот существенно отличаются от идеала, а растительные белки имеют еще более низкую биологическую ценность.

Биологическая ценность белка — доля задержки азота в организме от всего белка, попавшего в кровь. Мерой биологической ценности является такое количество белка, которое необходимо для поддержания азотистого равновесия в организме человека или животных. Если в белке есть все необходимые организму незаменимые и заменимые аминокислоты в нужном количестве и в необходимых пропорциях, и они полностью всасываются в желудочно-кишечном тракте, то его биологическая ценность будет равна 100. Когда в составе белка соотношение аминокислот неоптимальное, имеется дефицит отдельных незаменимых аминокислот или если белок плохо усваивается, то его биологическая ценность будет заведомо ниже (табл. 12).

Кругооборот белка в организме человека — явление физиологическое и связано с необходимостью обновления белка. Дело в том, что большинство белков и, прежде всего ферменты, живут недолго и могут разрушаться через несколько часов после биосинтеза. Значительно более долговечны структурные белки, гистоны, гемоглобин или компоненты цитоскелета клетки. Полупериод жизни белков в организме человека в среднем составляет 2-8 дней. Постоянное обновление белка играет важную роль в обмене веществ и является весьма эффективным механизмом регуляции активности ферментов, обновления пула иммуноглобулинов, удаления дефектных и ненужных в данное время белков. Быстрое разрушение требуется для удаления из организма биологически активных пептидов и пептидных гормонов. Постоянное разрушение и ресинтез новых белков позволяет клеткам «быстро приводить в соответствие с метаболическими потребностями уровень и активность наиболее важных ферментов» [2]. Ориентировочно в организме взрослого человека ежедневно в результате протеолиза деградирует до аминокислот 300-400 г белка. В то же время примерно столько же аминокислот включается во вновь

Таблица 12

ОЛ

сэ

КАЧЕСТВО НЕКОТОРЫХ ПИЩЕВЫХ БЕЛКОВ ОТНОСИТЕЛЬНО БЕЛКОВ ЖЕНСКОГО МОЛОКА

Пищевой белок Химическая ценность, % Биологическая ценность, % Дефицитные аминокислоты

Женское молоко 100 95 Нет

Яйцо куриное 100 87 Валин (74%), триптофан (79%)

Говядина 98 93 Изолейцин (59%), валин (60%), триптофан (63%), фенилала-нин (76%)

Коровье молоко 95 80-82 Валин (70%)

Рыба 61-86 Триптофан (42%), валин (62%), изолейцин (79%)

Соя 61-73 Валин (64%), метионин (57%), лейцин (75%), изолейцин (76%)

Белый хлеб 47 30 Лизин (29%), изолейцин (41%), валин (43%), метионин (52%), треонин (56%), лейцин (61%), триптофан (68%)

образованные белки. Оба эти процесса формируют кругооборот белка в организме. Учитывая, что в организме содержится около 10 кг различных белков, текущий протеолиз затрагивает всего 3% белка [2].

В результате протеолиза образуются аминокислоты, которые могут быть использованы клеткой для биосинтеза новых белков или поступают в кровь, формируя пул свободных аминокислот, объем которого составляет около 100 г. Деградация белка в клетках осуществляется с помощью двух специализированных систем: лизосом и протеосом. Важную роль в осуществлении деградации белков организма играет система пищеварения, в которой переваривается, а затем реутилизируется значительная часть плазматических и других эндогенных белков, а также белки, которые попадают в просвет кишки при слущивании завершивших свою работу эпителиальных клеток. В ходе деградации белка может накапливаться аминный азот, который, в отличие от углеводородной части аминокислот, непригоден для получения энергии. Поэтому аминогруппы, которые не могут быть использованы повторно, например, в реакциях трансаминирования, превращаются в аммиак, а затем — в мочевину.

В организме человека существует весьма эффективный механизм регуляции уровня белка. Чем выше дефицит белка в организме, тем лучше

Таблица 13

усваивается пищевой белок, и тем меньше будут потери аминокислот с калом и мочой. С другой стороны, чем больше белка содержится в пище, тем хуже он будет усваиваться. При отсутствии дефицита белка в организме его усвоение в желудочно-кишечном тракте также снижается. Механизм регуляции уровня белка в организме человека также связан с увеличением кругооборота белка и аминокислот при его дефиците и снижением кругооборота и усилением катаболизма белка при его избыточном поступлении с пищей. Таким образом, организм способен в определенной степени сглаживать дефицит белка, в то же время препятствуя перегрузке организма пищевым белком. Например, после приема пищи с высоким содержанием белка более половины аминокислот (57%), поступающих в печень, превращается в мочевину, 14% аминокислот остаются в печени и 23% — выходят в кровь и поступают в пул свободных аминокислот. Только 6% аминокислот используется печенью для синтеза белков [2].

Свободные аминокислоты, находящиеся в крови, захватываются печенью, почками, поджелудочной железой, тонкой кишкой,

РЕЙТИНГ СОДЕРЖАНИЯ АМИНОКИСЛОТ В КРОВИ И В МОЧЕ ЧЕЛОВЕКА [10]

Аминокислота Содержание в крови, мг/100 мл Экскреция с мочой в сутки, мг

Незаменимые диапазон в среднем

Валин 2,88 4-6 5,0

Лизин 2,72 7-48 27,5

Лейцин 1,86 9-26 17,5

Треонин 1,67 15-53 34,0

Изолейцин 1,34 14-28 21

Триптофан 1,27

Метионин 0,52 5-10 7,5

Заменимые

Аланин 3,40 21-71 46

Пролин 2,36 Менее 10 10

Аргинин 1,62

Глицин 1,50 21-71 46

Цистеин 1,47 10-21 15,5

Гистидин 1,38 113-320 217

Серин 1,12 27-73 50

Тирозин 1,04 15-49 32

Глютамат 0,70 8-40 24

Аспартат 0,03 Менее 10 10

т

сэ

более 85% свободных аминокислот покидает систему кровообращения в течение 5-15 минут, поэтому концентрация аминокислот в крови достаточно низкая — 35-70 мг/100 мл [2] (табл. 13).

ЗАКЛЮЧЕНИЕ

Таким образом, потребность человека в белке во многом зависит от качественного состава аминокислот, и прежде всего незаменимых. Поэтому белков животного происхождения, которые наиболее близки по составу аминокислот к белкам организма человека, требуется меньше, чем белков растительных, аминокислотный состав которых существенно отличается от оптимального для человека. Например, при употреблении белков с высокой биологической ценностью (мяса, молока, яиц) для удовлетворения потребности взрослого человека достаточно 0,75 г/ кг массы тела (52,5 г белка/сутки). При употреблении смешанного рациона (белки животного и растительного происхождения) потребность в белке будет составлять 0,85-1,0 г кг массы тела (59,5-70,0 г белка/сутки). Более того, при потреблении животных белков с калом теряется 2,5-3,0% азота, тогда как употреблении в пищу растительных продуктов, богатых клетчаткой (овощи, зерновые) — до 40% пищевого азота [6].

Низкие нормы потребности в белке, которые в свое время предлагали Ро и Читтенден, а затем и Вильямс, были основаны на классических представлениях об азотистом балансе (равновесии). Согласно этим представлениям для поддержания азотистого (белкового) равновесия в организме большинства взрослых людей, которые здоровы и находятся в покое, может быть достаточно 30 г белка/сутки. Читтенден, который изучал белковый обмен у молодых людей (студентов, солдат, спортсменов), показал, что азотистое равновесие вполне может обеспечить 55-60 г белка/сутки [7].

В принципе для поддержания азотистого равновесия у взрослого и здорового человека на минимальном уровне достаточно 36,9 г молочного белка/ сутки. С учетом высокого качества белка куриного яйца минимальная потребность в белке для поддержания азотистого равновесия может составлять 0,34-0,43 г белка/кг массы тела в сутки, или 28 г яичного белка в сутки [11]. Однако для обеспечения «надежного уровня потребления», белка требуется больше — 56,25-57,5 г белка казеина в сутки при калорийности пищевого рациона около 3000 ккал/ сутки. Для нормального физического развития, повышения работоспособности и устойчивости к неблагоприятным внешним воздействиям, а также сопротивляемости организма к инфекции белка нужно еще больше, чем то количество, которое всего лишь «обеспечивает поддержание азотистого равновесия». В этой связи выделяют «оптимальную потребность человека в белке», которая должна превышать надежный уровень на 50% и будет составлять 84,4-87,5 г белка/сутки [7].

Таким образом, потребность в белке должна складываться из некоего минимального количества — «безопасного уровня белка», который обеспечивает «надежный уровень потребления», и «дополнительного количества белка», который учитывает особенности обмена веществ, состояние здоровья и качественный состав пищевого рациона. Безопасный уровень белка обеспечивает надежное поддержание азотистого равновесия в организме определенного числа людей, а введение дополнительного количества белка необходимо для заполнения так называемых «лабильныхрезервов белка».

В 1973 году ФАО/ВОЗ путем расчета определило, что величина средней потребности в белке населения развитых стран должно составлять 48,5-56,6 г/ сутки (при относительной биологической ценности 70-80%). Для развивающихся стран, в питании которых присутствует большая доля низкокачественного растительного белка (относительная биологическая ценность — 60-70%), средняя потребность в белке была определена равной 56,6-65,5 г в сутки [11].

Чем ниже биологическая ценность белка, тем больше его требуется. Однако в этом случае некоторые аминокислоты будут поступать в организм человека в избыточном количестве, превышающем текущие потребности, связанные с биосинтезом белка и специфическим метаболизмом отдельных аминокислот. Белки и аминокислоты не способны запасаться в организме, поэтому лишние аминокислоты будут либо выводиться из организма, либо подвергаться метаболической деградации. Содержащийся в аминокислотах азот будет превращаться в мочевину и креатинин и выделяться с почками, углеродный скелет — использоваться для биосинтеза глюкозы или жирных кислот, а другая его часть — окисляться до углекислого газа и воды с образованием АТФ.

Потребность в белке во многом зависит от калорийности и состава других компонентов пищевого рациона — углеводов и липидов (табл. 14). Низкокалорийные диеты или диеты с недостаточным количеством углеводов увеличивают потребность в белке, поскольку часть белка начинает расходоваться для образования глюкозы и кетоновых тел. При отсутствии в пищевом рационе углеводов и жиров для достижения азотистого равновесия пищевого белка требуется в 5 раз больше [6]. С увеличением калорийности пищевого рациона потребность в белке снижается.

Таким образом, рассматривая потребность организма в белке и аминокислотах, можно сделать следующие выводы:

• Белок пищи необходим не только для биосинтеза белков организма, но и для решения энергетических проблем, особенно в критических ситуациях.

• Отдельные аминокислоты пищевого белка выполняют в организме самостоятельную функцию, что необходимо учитывать при назначении

Таблица 14

ВЛИЯНИЕ КАЛОРИЙНОСТИ РАЦИОНА НА ПОТРЕБНОСТЬ В БЕЛКЕ ДЛЯ ПОДДЕРЖАНИЯ АЗОТИСТОГО РАВНОВЕСИЯ [12]

Калорийность рациона Потребность в белке для нулевого баланса Безопасный уровень потребления белка

ккал/кг кал/70 кг г/кг г/70 кг г/кг г/70 кг

40 2800 0,78 54,6 1,02 71,4

45 3150 0,56 39,2 0,74 51,8

48 3360 0,51 35,7 0,62 43,4

57 4000 0,42 29,4 0,50 35

Рекомендуемая норма потребления 0,80 56

I

аминокислот, используя отдельные аминокислоты для коррекции питания.

• Идеальными белками по составу и пропорциям незаменимых аминокислот являются белки молока и куриного яйца и в меньшей степени — белки мяса. Растительные белки содержат аминокислоты в иных пропорциях и дефицитны по большинству незаменимых аминокислот.

• Избыточное потребление белковой пищи «не идет нам впрок», поскольку лишние аминокислоты пищи будут разрушаться, а белковый азот удаляться из организма. Потребление белка

должно быть равномерным на протяжении суток, что позволяет оптимизировать его всасывание и утилизацию, а также свести к минимуму потери аминокислот.

• Умеренное потребление белка не является столь катастрофичным для организма человека, поскольку при этом снижаются потери аминокислот.

• Для достижения разных целей необходимы белковые модули с разным количеством и соотношением как заменимых, так и незаменимых аминокислот.

ЛИТЕРАТУРА

1. ЛенинджерА.Л. Основы биохимии. — М.: Мир, 1985. — Т. 1. — 365 с.

2. КольманЯ., РемК.-Г. Наглядная биохимия. — М.: Мир, 2000. — 469 с.

3. Попова Т.С., Шестопалов А.Е., Тамазашвили Т.Ш., Лейдерман И.Н. Нутритивная поддержка больных в критических состояниях. — М., 2002. — 320 с.

4. Мартинчик А.Н., Маев И.В., Петухов А.Б. Питание человека (основы нутрициологии). — М.: ГОУ ВУНМЦ МЗ РФ, 2002. — 572 с.

5. Ньюсхолм Э., Старт К. Регуляция метаболизма. — М.: Мир, 1977. — 408 с.

6. Гигиена питания / Под ред. К.С. Петровского. — М.: Медицина, 1971.— Т. 1. — 511 с.

7. Высоцкий В.Г. К оценке потребности человека в белке // Вопросы питания. — 1978. — № 6. — С. 8-17.

8. Основы клинического питания. — Петрозаводск: ИнтелТек, 2003. — 412 с.

9. Химический состав пищевых продуктов. Книга 2. — М.: ВО Агропромиздат, 1987. — 360 с.

10. Большая медицинская энциклопедия. — М.: Медицина, 1974. — Т. 1. — С. 364-371.

11. Energy and Protein Requirements // WHO Tech. Rep. Ser. — 1973. — No 522. — P. 40-72.

12. Общая нутрициология. — М.: МЕДпресс-информ, 2005. — 392 с.

CD

Свойства аминокислот

Всем известен тот факт, что для продуктивных тренировок и высоких спортивных показателей необходимо соблюдать три основных правила — эффективные тренировочные программы, полноценный сон и сбалансированное, разнообразное питание. Если с тренировочными комплексами и сном все более-менее понятно, то с питанием довольно часто возникают вопросы. Все дело в том, что питаться правильно, потребляя необходимое для мышечного роста и формирования рельефной фигуры количество белков, жиров и углеводов, а также других питательных веществ, получается далеко не всегда. Причин много, это и не нормированный рабочий график, и всевозможные домашние проблемы, которые не оставляют времени полноценно поесть.

Однако желание улучшить результаты тренировок и повысить количество потребляемых питательных веществ побудило спортсменов к использованию спортивных добавок. Ассортимент подобных добавок на сегодня достаточно велик, но аминокислоты уже на протяжении многих лет остаются самым востребованным видом спортивного питания.

Список аминокислот представляет собой более двадцати компонентов, которые делятся на три основные категории: заменимые, незаменимые и условно заменимые.

Этот вид аминокислот не может продуцироваться в организме, а поступает только с пищей. Но не всегда есть возможность поесть как следует, к тому же, чтобы получить необходимое количество аминокислот, порции должны быть просто огромными. Поэтому важно принимать спортивные добавки, насыщенные этими аминокислотами. Всего существует 9 незаменимых аминокислот, 3 из которых имеют разветвленную форму — это так называемые ВСАА аминокислоты.

Лейцин, валин и изолейцин имеют отличную от других компонентов химическую структуру и обладают особыми свойствами. Они метаболизируются непосредственно в мышцах, что обеспечивает их более быстрое усвоение, а также принимают непосредственное участие в формировании новых мышечных волокон.

Гистидин — также незаменимая аминокислота, выполняющая широкий спектр жизненно важных функций для организма. Она оказывает позитивное воздействие на нервную систему, процессы кроветворения, участвует в восстановлении тканей. Гистидин активно используется организмом в процессе реабилитации после перенесенных болезней.
Лизин является ключевым компонентом в нервной системе, а также участвует в естественном синтезе коллагена — важного компонента опорно-двигательной системы.

Триптофан — аминокислота, которая крайне важна для организма. Необходима при управлении аппетитом, сном, настроением, улучшает работу мозга и способствует улучшению передачи нервных импульсов.

Метионин является предшественником некоторых заменимых аминокислот, а также проявляет активные антиоксидантные свойства. Также участвует в синтезе некоторых гормонов и формировании мышечных белков.

Фенилаланин известен антидипрессантными свойствами и принимает участие в синтезе адреналина.

Треонин — это важный элемент в синтезе белков, который также улучшает работу пищеварительной системы.

Продолжая список аминокислот, эти компоненты, судя из названия, могут самостоятельно вырабатываться в организме из других компонентов при соблюдении ряда условий. По идее, дополнительный прием этих аминокислот организму не нужен, однако при интенсивных физических и умственных нагрузках, эти компоненты очень быстро расходуются для обеспечения мышц энергией. Таким образом, наступает дефицит этих ингредиентов.

Аланин — это аминокислота, принимающая участие в энергетическом обмене, и участвующая в метаболизме глюкозы с целью последующего получения энергии.

Глицин необходим для синтеза лизина и пролина, а также для выработки коллагена. Также улучшает деятельность спинного и головного мозга.

Аргинин, являясь прекурсором окиси азота, улучшает кровоток, способствуя тем самым, улучшению насыщения мышечных тканей и внутренних органов кислородом. Кроме того, аргинин способствует более быстрому заживлению травм и нормализует кровяное давление.

Цитруллин может быть основой для синтеза аргинина, повышает выносливость, обеспечивает мышечный пампинг и увеличивает энергетический потенциал организма.

Цистеин поддерживает важные антиоксидантные процессы в организме, защищая мышечные волокна и клетки внутренних органов от пагубного воздействия свободных радикалов.

Глютамин — важная аминокислота, принимающая участие в мышечном росте. Все также знают эту аминокислоту, как важный антикатаболический компонент, надежно защищающий мышечные волокна от разрушений.

Глицин входит в состав большого количества мышечных белков, а также нормализует сон, улучшает умственную работоспособность и оказывает положительное воздействие на психо-эмоциональное состояние.

Орнитин принимает участие в синтезе гормона роста, а в комплексе с аминокислотами аргинин и карнитин, улучшают метаболизм жиров. Более того, орнитин улучшает работу печени и поддерживает иммунитет.

Пролин улучшает работу суставного аппарата и укрепляет сердечно-сосудистую систему.

Таурин в достаточно больших количествах присутствует в тканях человека и способствует активизации энергетических процессов, а также улучшает восстановление.

Тирозин повышает ментальную фокусировку и повышает способности организма в борьбе со стрессом.

Карнитин способствует жиросжигающим процессам, транспортируя жирные кислоты из жировых депо внутрь клеток, где происходит их окисление с последующим высвобождением энергии, необходимой для работы организма.

Помимо заменимых и незаменимых, список аминокислот содержит условно заменимые аминокислоты, к которым относят тирозин, цистеин, гистидин и аланин. Эти аминокислоты хотя и могут синтезироваться в организме, но происходит это при определенных условиях.

В спортивном питании можно встретить большое количество аминокислотных комплексов, которые разделяются по соотношению компонентов, составу, а также по видам используемых аминокислот. Чаще всего различают аминокислоты в свободной форме, гидролизаты, а также ди- и трипептидные формы. Различные виды аминокислот обладают разной скоростью усвоения, но все они направлены на поддержку высокого анаболического состояния в организме, а также на увеличение синтеза мышечных волокон.

Аминокислоты обладают широким спектром свойств для человеческого организма, и в первую очередь, они приобрели популярность среди спортсменов различных уровней подготовки. Это и понятно, ведь высокая концентрация аминокислот позволяет стимулировать мышечный анаболизм и значительно снижает усталость во время высокоинтенсивного тренинга. Все эти процессы оказывают положительное влияние на наращивание мускулатуры и формирование рельефного тела.

Еще одной полезной особенностью аминокислот является поддержка жиросжигающих функций организма. Проведенные исследования показали, что активные люди, систематически принимающие аминокислотные комплексы, значительно быстрее теряют жировые отложения, сохраняя при этом больше мышечной массы. Это обусловлено тем, что прием аминокислот ускоряет обменные процессы, заставляя жирные кислоты окисляться быстрее, а также активно противостоит катаболическим реакциям, сохраняя мышцы в целости.
Полезные свойства аминокислот распространяются также и на иммунную систему. Научно доказано, что дефицит аминокислот оказывает негативное влияние на организм, в значительной степени ослабляя защитные функции и увеличивая восприимчивость к различным недугам. Такие компоненты как аргинин, глютамин и цистеин играют ключевую роль в поддержке иммунитета, а также участвуют в активации лимфоцитов, цитокинов, антител и других разных ингредиентов для улучшения защиты организма.

Эти, а также другие полезные свойства аминокислот, говорят о том, что данные спортивные добавки помогут не только улучшить физическую форму и повысить спортивные показатели, но также поддержать организм и оптимизировать метаболические процессы. Кроме того, аминокислотные комплексы полностью безопасны и не имеют противопоказаний к применению.

Улучшить рацион питания, повысить анаболическое состояние мышц, ускорить белковый синтез и поддержать защитные свойства организма, укрепив здоровье, вам помогут аминокислоты. Вы всегда можете купить эти добавки, выбрав из широкого ассортимента продукции нашего интернет магазина.

Незаменимые аминокислоты: определение, преимущества и продукты питания

Организму необходимо 20 различных аминокислот для поддержания хорошего здоровья и нормального функционирования. Люди должны получать девять из этих аминокислот, называемых незаменимыми аминокислотами, с пищей. Хорошие диетические источники включают мясо, яйца, тофу, сою, гречку, киноа и молочные продукты.

Аминокислоты — это соединения, которые образуют белки. Когда человек ест пищу, содержащую белок, его пищеварительная система расщепляет белок на аминокислоты.Затем организм комбинирует аминокислоты различными способами для выполнения функций организма.

Здоровый организм может производить другие 11 аминокислот, поэтому они обычно не нуждаются в поступлении в организм с пищей.

Аминокислоты укрепляют мышцы, вызывают химические реакции в организме, переносят питательные вещества, предотвращают болезни и выполняют другие функции. Дефицит аминокислот может привести к снижению иммунитета, проблемам с пищеварением, депрессии, проблемам с фертильностью, снижению умственной активности, замедлению роста у детей и многим другим проблемам со здоровьем.

Каждая из незаменимых аминокислот играет различную роль в организме, и симптомы дефицита соответственно различаются.

Существует много типов незаменимых аминокислот, в том числе:

Лизин

Лизин играет жизненно важную роль в наращивании мышц, поддержании прочности костей, восстановлении после травм или хирургических вмешательств и регулировании гормонов, антител и ферментов. Он также может иметь противовирусное действие.

Существует не так много исследований дефицита лизина, но исследование на крысах показывает, что дефицит лизина может привести к вызванной стрессом тревоге.

Гистидин

Гистидин способствует росту, образованию клеток крови и восстановлению тканей. Он также помогает поддерживать особое защитное покрытие нервных клеток, которое называется миелиновой оболочкой.

В организме гистидин превращается в гистамин, который имеет решающее значение для иммунитета, репродуктивного здоровья и пищеварения. Результаты исследования, в котором приняли участие женщины с ожирением и метаболическим синдромом, показывают, что добавки гистидина могут снизить ИМТ и инсулинорезистентность.

Дефицит может вызвать анемию, а низкий уровень в крови чаще встречается у людей с артритом и заболеванием почек.

Треонин

Треонин необходим для здоровья кожи и зубов, так как он входит в состав зубной эмали, коллагена и эластина. Он помогает метаболизму жиров и может быть полезен людям с расстройством желудка, тревожностью и легкой депрессией.

Исследование 2018 года показало, что дефицит треонина у рыб привел к снижению устойчивости этих животных к болезням.

Метионин

Метионин и заменимая аминокислота цистеин играют важную роль в здоровье и эластичности кожи и волос. Метионин также помогает сохранять ногти крепкими. Он способствует правильному всасыванию селена и цинка и удалению тяжелых металлов, таких как свинец и ртуть.

Валин

Валин необходим для умственной концентрации, координации мышц и эмоционального спокойствия. Люди могут использовать добавки валина для роста мышц, восстановления тканей и получения энергии.

Дефицит может вызвать бессонницу и снижение умственной функции.

Изолейцин

Изолейцин помогает заживлению ран, укреплению иммунитета, регуляции уровня сахара в крови и выработке гормонов. Он в основном присутствует в мышечной ткани и регулирует уровень энергии.

Пожилые люди могут быть более склонны к дефициту изолейцина, чем молодые люди. Этот недостаток может вызвать мышечное истощение и дрожь.

Лейцин

Лейцин помогает регулировать уровень сахара в крови и способствует росту и восстановлению мышц и костей. Он также необходим для заживления ран и выработки гормона роста.

Дефицит лейцина может вызвать кожную сыпь, выпадение волос и усталость.

Фенилаланин

Фенилаланин помогает организму использовать другие аминокислоты, а также белки и ферменты. Организм превращает фенилаланин в тирозин, который необходим для определенных функций мозга.

Дефицит фенилаланина, хотя и встречается редко, может привести к плохой прибавке в весе у младенцев. Это также может вызвать экзему, усталость и проблемы с памятью у взрослых.

Фенилаланин часто входит в состав искусственного подсластителя аспартама, который производители используют для приготовления диетических газированных напитков.Большие дозы аспартама могут повышать уровень фенилаланина в головном мозге, вызывать беспокойство и нервозность, а также влиять на сон.

Люди с редким генетическим заболеванием, называемым фенилкетонурией (ФКУ), не могут метаболизировать фенилаланин. В результате им следует избегать употребления продуктов с высоким содержанием этой аминокислоты.

Триптофан

Триптофан необходим для нормального роста младенцев и является предшественником серотонина и мелатонина. Серотонин — нейромедиатор, регулирующий аппетит, сон, настроение и боль.Мелатонин также регулирует сон.

Триптофан является седативным средством и входит в состав некоторых снотворных. Одно исследование показывает, что добавление триптофана может улучшить умственную энергию и эмоциональную обработку у здоровых женщин.

Дефицит триптофана может вызвать состояние, называемое пеллагрой, которое может привести к слабоумию, кожной сыпи и проблемам с пищеварением.

Многие исследования показывают, что низкий уровень белка и незаменимых аминокислот влияет на мышечную силу и работоспособность.

Согласно исследованию 2014 года, недостаток незаменимых аминокислот может привести к снижению мышечной массы у пожилых людей.

Дополнительное исследование показывает, что аминокислотные добавки могут помочь спортсменам восстановиться после тренировки.

Раньше врачи считали, что люди должны есть продукты, содержащие все девять незаменимых аминокислот за один прием пищи.

В результате, если человек не ел мясо, яйца, молочные продукты, тофу или другую пищу со всеми незаменимыми аминокислотами, необходимо было комбинировать два или более растительных продукта, содержащих все девять, таких как рис и бобы.

Однако сегодня эта рекомендация иная. Люди, которые придерживаются вегетарианской или веганской диеты, могут получать свои незаменимые аминокислоты из различных растительных продуктов в течение дня, и им не обязательно есть их все вместе за один прием пищи.

Поделиться на Pinterest Человек должен поговорить со своим врачом, прежде чем принимать добавки с незаменимыми аминокислотами.

Хотя 11 аминокислот не являются необходимыми, людям могут потребоваться некоторые из них, если они находятся в состоянии стресса или болеют. В это время организм может быть не в состоянии производить достаточное количество этих аминокислот, чтобы удовлетворить повышенную потребность.Эти аминокислоты являются «условными», что означает, что они могут потребоваться человеку в определенных ситуациях.

Иногда люди могут захотеть принимать добавки с незаменимыми аминокислотами. Лучше сначала посоветоваться с врачом относительно безопасности и дозировки.

Несмотря на то, что дефицит незаменимых аминокислот возможен, большинство людей может получить их в достаточном количестве, соблюдая диету, включающую белок.

Продукты из следующего списка являются наиболее распространенными источниками незаменимых аминокислот:

  • Лизин содержится в мясе, яйцах, сое, черной фасоли, киноа и семенах тыквы.
  • Мясо, рыба, птица, орехи, семена и цельнозерновые продукты содержат большое количество гистидина.
  • Творог и зародыши пшеницы содержат большое количество треонина.
  • Метионин содержится в яйцах, зернах, орехах и семенах.
  • Валин содержится в сое, сыре, арахисе, грибах, цельнозерновых и овощах.
  • Изолейцин содержится в мясе, рыбе, птице, яйцах, сыре, чечевице, орехах и семенах.
  • Источниками лейцина являются молочные продукты, соя, фасоль и бобовые.
  • Фенилаланин содержится в молочных продуктах, мясе, птице, сое, рыбе, бобах и орехах.
  • Триптофан содержится в большинстве продуктов с высоким содержанием белка, включая зародыши пшеницы, творог, курицу и индейку.

Это лишь несколько примеров продуктов, богатых незаменимыми аминокислотами. Все продукты, содержащие белок, будь то растительного или животного происхождения, будут содержать по крайней мере некоторые из незаменимых аминокислот.

Потребление незаменимых аминокислот имеет решающее значение для хорошего здоровья.

Ежедневное употребление разнообразных продуктов, содержащих белок, — лучший способ для людей получать достаточное количество незаменимых аминокислот.При современной диете и доступе к большому разнообразию продуктов дефицит редко встречается у людей, которые в целом имеют хорошее здоровье.

Перед приемом пищевых добавок следует всегда проконсультироваться с врачом.

Незаменимые и незаменимые аминокислоты для человека | Журнал питания

РЕФЕРАТ

Здесь мы сравнили традиционное определение питательных веществ незаменимых и незаменимых аминокислот для человека с категоризацией, основанной на метаболизме и функции аминокислот.Три взгляда приводят к несколько разным толкованиям. С точки зрения питания совершенно очевидно, что некоторые аминокислоты являются абсолютной диетической необходимостью для поддержания нормального роста. Тем не менее, в литературе можно найти реакцию роста на дефицит незаменимых аминокислот. С точки зрения метаболизма, есть только три незаменимые аминокислоты (лизин, треонин и триптофан) и две незаменимые аминокислоты (глутамат и серин). Кроме того, рассмотрение метаболизма аминокислот in vivo приводит к определению третьего класса аминокислот, называемых условно незаменимыми, синтез которых может осуществляться млекопитающими, но может быть ограничен множеством факторов.Эти факторы включают наличие в рационе соответствующих прекурсоров, а также зрелость и здоровье человека. С функциональной точки зрения все аминокислоты незаменимы, и был выдвинут аргумент в пользу идеи критической важности заменимых и условно незаменимых аминокислот для физиологической функции.

Вот уже как минимум 60 лет принято разделять аминокислоты на две категории: незаменимые (или незаменимые) и необязательные (или несущественные).Эта категоризация обеспечивает удобный и в целом полезный способ просмотра аминокислотного питания. Однако, несмотря на долговечность этой конвенции, по мере того, как стало доступно больше информации, различия между незаменимыми и незаменимыми аминокислотами, по крайней мере на метаболическом уровне, стали все более размытыми. Действительно, У. К. Роуз, который отвечал за первоначальное определение этих двух терминов, не был особенно очарован тем, как они применялись другими, и написал следующее (Womack and Rose, 1947):

«Мы подчеркнули несколько раз… классификация аминокислот, таких как аргинин или глутаминовая кислота, как незаменимых или незаменимых, является чисто вопросом определения.”

Я хочу рассмотреть этот« вопрос определения », исследуя термины с точки зрения питания, метаболизма и функциональности.

Пищевая ценность незаменимых и незаменимых аминокислот

Важно помнить, что термины «незаменимый» и «необязательный» изначально были определены не только с точки зрения диеты, но и в отношении роли аминокислот в поддержке отложения и роста белка. На самом деле, насколько я могу судить, исходное определение незаменимой аминокислоты в пищевой ценности (Borman et al.1946) был следующим: «Тот, который не может быть синтезирован организмом животных из материалов , обычно доступных клеткам со скоростью , соизмеримой с требованиями для нормального роста . «

» Ключевые фразы в этом определении и фразы, выделенные авторами курсивом, — «обычно доступны», «со скоростью» и «нормальный рост». Каждый из них является важным определителем.

Фраза «обычно доступные» важна, потому что ряд незаменимых в питательном отношении аминокислот, например.g., аминокислоты с разветвленной цепью, фенилаланин и метионин, могут быть синтезированы путем трансаминирования их аналогичных α-кетокислот. Однако эти кетокислоты обычно не входят в рацион и, следовательно, «обычно не доступны для клеток». Фраза «со скоростью» важна, потому что существуют обстоятельства, при которых скорость синтеза аминокислоты может быть ограничена, например, доступностью соответствующих количеств метаболического азота. Действительно, скорость синтеза приобретает особое значение, когда мы рассматриваем группу аминокислот, например аргинин, цистеин, пролин и, возможно, глицин, которые часто называют условно незаменимыми.Например, Вомак и Роуз (1947) подчеркнули важное замечание о том, что степень, в которой аргинин может считаться незаменимым, во многом зависит от количества его естественных предшественников, пролина и глутамата, в рационе. Наконец, фраза «нормальный рост» важна в двух отношениях. Во-первых, он служит для того, чтобы подчеркнуть, что определения изначально были построены в контексте роста. Например, можно показать (Таблица 1), что прием пищи, полностью лишенной глутамата, который в некотором смысле может рассматриваться как доработка незаменимых аминокислот, приводит к небольшой, но статистически значимой более медленной скорости роста.Во-вторых, ограничение определения существенности для роста не включает в себя важность некоторых аминокислот для путей утилизации, отличных от отложения белка, что я буду обсуждать позже.

ТАБЛИЦА 1

Влияние рациона без глутамата + глутамина на прибавку массы тела у крыс и свиней

ТАБЛИЦА 1

Влияние рациона без глутамата + глутамина на прирост массы тела у крыс и свиней

Биосинтез аминокислот

Также возможно определить существенность и несущественность аминокислот в химических и метаболических терминах.Исследование аминокислот, которые обычно считаются важными с пищей, показывает, что каждая из них имеет определенную структурную особенность, синтез которой не может катализироваться ферментами млекопитающих (таблица 2). В связи с этим очень важно отметить, что потеря способности осуществлять эти биосинтеза появилась на ранней стадии эволюции и является общей чертой метаболизма эукариотических организмов в целом, а не только млекопитающих. Однако с этой точки зрения важным термином является синтез de novo.Это связано с тем, что некоторые незаменимые аминокислоты могут быть синтезированы из предшественников, которые очень похожи по структуре. Например, метионин можно синтезировать как путем переаминирования его аналога кетокислоты, так и путем реметилирования гомоцистеина. В этом смысле млекопитающее способно синтезировать лейцин, изолейцин, валин, фенилаланин и метионин. Однако это не новый синтез, потому что кетокислоты с разветвленной цепью и гомоцистеин первоначально были получены из аминокислот с разветвленной цепью и метионина соответственно.Согласно этому ограниченному метаболическому определению существенности, треонин и лизин (и, возможно, триптофан) являются единственными действительно незаменимыми аминокислотами.

ТАБЛИЦА 2

Структурные особенности, которые делают аминокислоты незаменимыми компонентами рациона млекопитающих

Вторичный метанол

Вторичный метанол

Аминокислоты
.
Конструктивная особенность
.
Лейцин, изолейцин, валин Разветвленная алифатическая боковая цепь
Лизин Первичный амин
Треонин
Треонин Вторичный тхолин

Индольное кольцо
Фенилаланин Ароматическое кольцо
Гистидин Имидазольное кольцо

Вторичный метанол

Вторичный метанол

Аминокислота
.
Конструктивная особенность
.
Лейцин, изолейцин, валин Разветвленная алифатическая боковая цепь
Лизин Первичный амин
Треонин
Треонин Вторичный тхолин

Индольное кольцо
Фенилаланин Ароматическое кольцо
Гистидин Имидазольное кольцо

ТАБЛИЦА 2

Структурные особенности, которые превращают аминокислоты 163

в незаменимые компоненты в рационе млекопитающих
.

Конструктивная особенность
. Лейцин, изолейцин, валин Разветвленная алифатическая боковая цепь Лизин Первичный амин Треонин Треонин Вторичный тхолин

Вторичный метанол

Вторичный метанол Индольное кольцо Фенилаланин Ароматическое кольцо Гистидин Имидазольное кольцо

Вторичный метанол

Вторичный метанол

Аминокислота
.
Конструктивная особенность
.
Лейцин, изолейцин, валин Разветвленная алифатическая боковая цепь
Лизин Первичный амин
Треонин
Треонин Вторичный тхолин

Индольное кольцо
Фенилаланин Ароматическое кольцо
Гистидин Имидазольное кольцо

Обратное относится к заменяемым аминокислотам.Строго говоря, действительно заменимая аминокислота — это аминокислота, которая может быть синтезирована de novo из не аминокислотного источника азота (например, ионов аммония) и подходящего источника углерода. Согласно этому метаболическому определению, единственными действительно метаболически незаменимыми аминокислотами являются глутаминовая кислота и серин. Если это так, то эти две аминокислоты являются конечными предшественниками других заменимых аминокислот. Этот вывод приводит к предсказанию, что вклад эндогенного синтеза в системные потоки глутамата и серина должен быть выше, чем его вклад в потоки других заменимых аминокислот.Похоже, это так (таблица 3). Интересно, что существует обратная взаимосвязь между вкладом эндогенного синтеза в плазменный поток данной заменимой аминокислоты и степенью, с которой кишечник метаболизирует пищевые аминокислоты при первом прохождении (см. Reeds et al.1996, Stoll et al. 1998).

ТАБЛИЦА 3

Вклад эндогенного синтеза в системный поток заменимых аминокислот у людей

Аминокислоты
.
Флюс от синтеза
.
.
. Федеральное правительство
.
натощак
.
%
Глутамат 1 98 98
Серин 26 76 78
Аланин 1 45 46
Глицин 1 35 35
Пролин 2 0 7
Аминокислота
.
Флюс от синтеза
.
.
. Федеральное правительство
.
натощак
.
%
Глутамат 1 98 98
76 78
Аланин 1 45 46
Глицин 1 35 35
Пролин 2 0 7

ТАБЛИЦА 3

Вклад эндогенного синтеза в системный поток заменимых аминокислот у человека

Аминокислоты
.
Флюс от синтеза
.
.
. Федеральное правительство
.
натощак
.
%
Глутамат 1 98 98
Серин 26 76 78
Аланин 1 45 46
Глицин 1 35 35
Пролин 2 0 7
Аминокислота
.
Флюс от синтеза
.
.
. Федеральное правительство
.
натощак
.
%
Глутамат 1 98 98
76 78
Аланин 1 45 46
Глицин 1 35 35
Пролин 2 0 7

Условно незаменимые аминокислоты

Хотя азот аминокислот, которые могут синтезировать млекопитающие, в конечном итоге происходит из глутамата или серина, есть некоторые аминокислоты, которые синтезируются более сложными путями, чем простое переаминирование соответствующей кетокислоты.Эти аминокислоты часто называют «условно незаменимыми», этот термин используется для обозначения измеримых ограничений скорости их синтеза. Когда этот предел достигнут, соответствующая аминокислота становится важным компонентом диеты. Ограничения могут быть результатом ряда факторов.

Во-первых, синтез этих аминокислот (таблица 4) требует предоставления другой аминокислоты, либо в качестве донора углерода, либо в качестве донора вспомогательной группы, такой как серная группа цистеина.Таким образом, способность организма синтезировать данную условно незаменимую аминокислоту определяется доступностью ее предшественника аминокислоты, что подчеркивал Роуз в своих исследованиях взаимодействия между глутаматом, пролином и аргинином в питании. В некоторых случаях, например, для поддержания поступления глицина у млекопитающих, вскармливаемых молоком, потребность в синтезе условно незаменимых аминокислот (Джексон и др., 1981) требует увеличения синтеза его предшественника, в данном случае серина. .

ТАБЛИЦА 4

Прекурсоры условно незаменимых аминокислот

)

Продукт
.
Прекурсор углерода
.
Прекурсоры прочие
.
Аргинин Глутамат / глутамин / пролин Аммиак и аспартат N
Пролин Глутамат / серин Глутамат

Глютамин

Глютамин
Глицин Серин

)

Продукт
.
Прекурсор углерода
.
Прекурсоры прочие
.
Аргинин Глутамат / глутамин / пролин Аммиак и аспартат N
Пролин Глутамат / серин Глутамат

Глютамин

Глютамин
Глицин Серин

ТАБЛИЦА 4

Прекурсоры условно незаменимых аминокислот

)

Продукт
.
Прекурсор углерода
.
Прекурсоры прочие
.
Аргинин Глутамат / глутамин / пролин Аммиак и аспартат N
Пролин Глутамат / серин Глутамат

Глютамин

Глютамин
Глицин Серин

)

Продукт
.
Прекурсор углерода
.
Прекурсоры прочие
.
Аргинин Глутамат / глутамин / пролин Аммиак и аспартат N
Пролин Глутамат / серин Глутамат

Глютамин

Глютамин
Глицин Серин

Во-вторых, некоторые аминокислоты могут быть синтезированы только в ограниченном количестве тканей.Например, синтез пролина и аргинина в решающей степени зависит от метаболизма в кишечнике (Wakabayashi et al. 1994, Wu et al. 1997). Более того, в случае этих двух аминокислот имеющиеся данные свидетельствуют о том, что диетические, в отличие от системных, предшественники аминокислот являются обязательными (Beaumier et al. 1995, Berthold et al. 1995, Brunton et al. 1999, Murphy et al. 1996 г., Столл и др. 1999 г.). Из этого следует, что изменения либо в кишечном метаболизме, либо в способе питания могут иметь решающее значение для способности организма синтезировать эти аминокислоты.Об этом ярко свидетельствуют проблемы гомеостаза аргинина и аммиака, которые сопровождают полное парентеральное питание (Brunton et al. 1999).

В-третьих, большинство данных свидетельствует о том, что даже в присутствии обильных количеств соответствующих предшественников количества условно незаменимых аминокислот, которые могут быть синтезированы, могут быть весьма ограниченными (Beaumier et al. 1995, Berthold et al. 1995, Castillo et al. al. 1993, Fukagawa et al. 1996, Jaksic et al. 1987), поэтому можно утверждать, что существуют обстоятельства, особенно стрессовые обстоятельства, при которых метаболические потребности в аминокислотах возрастают до значений, превышающих биосинтетические возможности организм.По-видимому, так обстоит дело с пролиновым питанием обожженных людей (Jaksic et al. 1991). Более того, у незрелых особей, таких как младенцы с низкой массой тела при рождении, возможно, что синтез условно незаменимых аминокислот может быть ограничен явным отсутствием ферментативной активности (Gaull et al. 1972).

Эти комментарии, однако, следует сдерживать с осторожностью, потому что кажется вероятным, что метаболизм некоторых условно незаменимых аминокислот сильно разделен на части и, следовательно, измерения изотопов в пуле плазмы могут дать количественное неверное представление о масштабе биосинтез.Это, по-видимому, относится к метаболизму пролина, аргинина и цистеина, поскольку оценки скорости их синтеза на основе параллельных измерений потребления и протеолиза организма не согласуются с оценками, основанными на включении изотопов из меченых предшественников (см. Beaumier et al. 1995 и Berthold et al. 1995 для аргинина; Jaksic et al. 1987 и Berthold et al. 1995 для пролина). Кроме того, есть данные, позволяющие предположить, что вновь синтезированные условно незаменимые аминокислоты могут использоваться в их исходных клетках и, следовательно, не уравновешиваются с пулом плазмы (Miller et al.1996). Тем не менее, даже с учетом этих неопределенностей, кажется, что синтез этих аминокислот может стать ограничивающим для роста и других физиологических функций, и что можно определить абсолютные, а не относительные диетические потребности.

Аминокислоты и физиологическая функция

Как я подчеркивал здесь ранее, первоначальные определения терминов «незаменимый» и «необязательный» были сосредоточены на росте или, вернее, на отложении белка.Когда определения применяются таким образом, возникает относительно небольшая путаница, по крайней мере, в отношении незаменимых аминокислот. Количественная оценка минимальных потребностей в незаменимых аминокислотах для поддержки роста относительно проста, потому что они являются просто продуктом скорости отложения белка и аминокислотного состава откладываемых белков. В этом отношении существует хороший консенсус в отношении того, что относительные потребности отдельных аминокислот для поддержки отложения белка очень похожи среди видов млекопитающих (Таблица 5).Другими словами, потребности в аминокислотах для поддержки отложения белка у младенца человека отличаются от потребностей других млекопитающих только в той степени, в которой их соответствующие скорости отложения белка различаются.

ТАБЛИЦА 5

Состав незаменимых аминокислот смешанного белка тела незрелых млекопитающих

ТАБЛИЦА 5

Состав незаменимых аминокислот смешанного белка тела незрелых млекопитающих

У людей обязательные потребности в аминокислотах для отложения чистого белка составляют очень незначительная часть общей потребности в аминокислотах (Dewey et al.1996), и> 90% от общей потребности в аминокислотах, даже для маленького ребенка, связано с поддержанием запасов белка в организме (то есть азотного равновесия). Сформулировать потребности в аминокислотах для «поддержания» сложно и до сих пор остаются предметом споров (см. Young and Borgonha 2000).

Не менее важной, чем технические и экспериментальные трудности, связанные с измерением потребности в поддерживающих аминокислотах (Fuller and Garlick, 1994), является проблема идентификации процессов, которые потребляют аминокислоты, близкие к азотному равновесию.Часть этих потребностей, конечно, напрямую связана с метаболизмом белков и отражает два связанных фактора: аминокислоты, высвобождаемые в результате деградации тканевых белков, вряд ли будут повторно использоваться с полной эффективностью, и что присутствие конечных концентраций свободных аминокислот неизбежно приводит к некоторой степени катаболизма. Также появляется все больше доказательств того, что значительная часть потребностей в некоторых незаменимых аминокислотах может отражать <100% эффективную переработку кишечных секретов (Fuller et al.1994, Fuller and Reeds, 1998. Этот аспект потребности в основных или поддерживающих аминокислотах поддается прямому измерению, хотя некоторые технические аспекты этих измерений, особенно связанные с метаболической функцией кишечного белка, представляют трудности (см. Fuller and Reeds, 1998). . Однако по мере накопления большего количества информации становится все более очевидным, что аминокислоты участвуют (и, следовательно, потребляются) в ряде физиологических функций, которые напрямую не связаны с самим метаболизмом белков.

Прежде чем перейти к обсуждению этих путей, необходимо подчеркнуть два дополнительных момента. Во-первых, при потреблении белка, достаточном для поддержания белкового равновесия в организме, ограничивающим питательным веществом может быть сам метаболический азот, а не какая-либо отдельная аминокислота. Другими словами, из-за дефицита азота способность организма синтезировать аминокислоты может быть снижена до такой степени, что потребление заменимых аминокислот может стать ограниченным. Это может быть особенно применимо к условиям, связанным с потреблением небольших количеств так называемых белков высокого качества (т.е., белки, которые хорошо сбалансированы по отложению белков и, следовательно, с высоким соотношением незаменимая аминокислота / незаменимая аминокислота). Во-вторых, теперь есть доказательства того, что взрослый человек способен снижать катаболизм любой отдельной аминокислоты, близкий к нулю, если эта аминокислота сильно ограничивает (Raguso et al. 1999). Однако скорость катаболизма аминокислоты, наблюдаемая в этом случае, намного ниже, чем скорость катаболизма, наблюдаемая, когда белок в целом является ограничивающим диетическим питательным веществом.Одно из объяснений этого наблюдения состоит в том, что в условиях безбелкового питания пул свободных аминокислот происходит исключительно за счет протеолиза тканей, так что все аминокислоты одинаково ограничивают. Следствием этого является то, что использование любой отдельной аминокислоты для поддержки небелкового процесса автоматически ограничивает способность организма рециркулировать все остальные аминокислоты обратно в белковые запасы организма. Возникают вопросы: каковы эти небелковые пути потребления и каково их количественное влияние на потребность в аминокислотах в целом? Краткий ответ на оба вопроса прост: на текущий момент недостаточно информации, чтобы дать точные ответы.Тем не менее, можно предположить, какие пути могут быть наиболее важными на уровне общей физиологической функции.

Для развития этих гипотез полезно рассмотреть те функции, которые необходимы для поддержания здоровья. Это не новый подход, поскольку его полезность была явно оценена некоторыми основоположниками науки о питании. Например, Войт (1902), цитируемый Луском (1922), написал следующее:

«Поэтому я придерживаюсь своей« старой »точки зрения, точки зрения чистого метаболизма … тем более объединяющее развитие станет возможным по мере изучения того, что вещества разрушаются при разных обстоятельствах… и сколько различных материалов необходимо подавать, чтобы поддерживал тело в хорошем состоянии.»

На мой взгляд, четыре системы критически важны для« поддержания тела в рабочем состоянии »: кишечник для поддержания абсорбционной и защитной функций; иммунная система и другие аспекты защиты; скелетная мускулатура; и центральная нервная система. Внутри каждой системы можно определить критические метаболические роли некоторых конкретных аминокислот (таблица 6).

ТАБЛИЦА 6

Участие аминокислот в физиологической и метаболической функции

Глютамин

, Gly

Первичный оксид )

Глутатион

Глутатион

Система
.
Функция
.
Товар
.
Прекурсор
.
Кишечник Выработка энергии АТФ Glu, Asp, глутамин
Пролиферация Нуклеиновые кислоты Глутамин Cys, Glu, Gly
Оксид азота Arg
Mucins Thr, Cys, Ser, Pro выработка энергии Gly, Arg, Met
Пероксидантная защита Таурин (?) Cys
Нервная система Синтез передатчика Serotergic

Adrenergic Попробуйте 9 0176
Глютаминергический Глу
Глицинергический Гли
Cys
Иммунная система Пролиферация лимфоцитов (?) Глутамин, Arg, Asp
Пероксидантная защита Глутатион

Регулирование артериального давления Оксид азота Arg
Пероксидантная защита (?) Глутатион красных клеток Cys, Glu, Gly
.

Глютамин

, Gly

Оксид пероксида углерода )

Глутатион

Глутатион

Функция
.
Товар
.
Прекурсор
.
Кишечник Выработка энергии АТФ Glu, Asp, глутамин
Пролиферация Нуклеиновые кислоты Глутамин Cys, Glu, Gly
Оксид азота Arg
Mucins Thr, Cys, Ser, Pro выработка энергии Gly, Arg, Met
Пероксидантная защита Таурин (?) Cys
Нервная система Синтез передатчика Serotergic

Adrenergic Попробуйте 9 0176
Глютаминергический Глю
Глицинергический Гли
Cys
Иммунная система Пролиферация лимфоцитов (?) Глутамин, Arg, Asp
Пероксидантная защита Глутатион

Регуляция артериального давления Оксид азота Arg
Пероксидантная защита (?) Глутатион красных клеток Cys, Glu, Gly

ТАБЛИЦА 6

аминокислот Вовлечение 6

аминокислот метаболизм Функция микросхемы

Глютамин

, Gly

Первичный оксид )

Глутатион

Глутатион

Система
.
Функция
.
Товар
.
Прекурсор
.
Кишечник Выработка энергии АТФ Glu, Asp, глутамин
Пролиферация Нуклеиновые кислоты Глутамин Cys, Glu, Gly
Оксид азота Arg
Mucins Thr, Cys, Ser, Pro выработка энергии Gly, Arg, Met
Пероксидантная защита Таурин (?) Cys
Нервная система Синтез передатчика Serotergic

Adrenergic Попробуйте 9 0176
Глютаминергический Глу
Глицинергический Гли
Cys
Иммунная система Пролиферация лимфоцитов (?) Глутамин, Arg, Asp
Пероксидантная защита Глутатион

Регулирование артериального давления Оксид азота Arg
Пероксидантная защита (?) Глутатион красных клеток Cys, Glu, Gly
.

Глютамин

, Gly

Оксид пероксида углерода )

Глутатион

Глутатион

Функция
.
Товар
.
Прекурсор
.
Кишечник Выработка энергии АТФ Glu, Asp, глутамин
Пролиферация Нуклеиновые кислоты Глутамин Cys, Glu, Gly
Оксид азота Arg
Mucins Thr, Cys, Ser, Pro выработка энергии Gly, Arg, Met
Пероксидантная защита Таурин (?) Cys
Нервная система Синтез передатчика Serotergic

Adrenergic Попробуйте 9 0176
Глютаминергический Глу
Глицинергический Гли
Cys
Иммунная система Пролиферация лимфоцитов (?) Глутамин, Arg, Asp
Пероксидантная защита Глутатион

Регуляция артериального давления Оксид азота Arg
Пероксидантная защита (?) Глутатион красных клеток Cys, Glu, Gly

Пожалуй, самое интересное соображение Т 6 состоит в том, что, за исключением участия фенилаланина и триптофана в поддержании адренергической и серотонинергической систем нейротрансмиттеров, а также метионина в качестве донора метильной группы для синтеза креатина, необходимые предшественники являются несущественными или условно незаменимыми аминокислотами.Таким образом, возникает соблазн утверждать, что способность поддерживать синтез этих аминокислот имеет достаточно высокий функциональный приоритет, что в условиях, в которых белок (азот) ограничен, незаменимые аминокислоты используются для поддержания этих путей. В таблице 7 я попытался сравнить оценки оборота или потерь некоторых критических конечных продуктов с кинетикой их аминокислот-предшественников. Это сравнение предполагает, что некоторые пути, например, производство таурина и оксида азота, имеют небольшое количественное влияние на питание прекурсоров, тогда как другие имеют гораздо большее значение.Таким образом, синтез креатина (оцениваемый по экскреции креатинина) и обмен глутатиона (оцениваемый по измерениям в плазме и эритроцитах) оказывают существенное влияние на использование некоторых предшественников, особенно если скорость синтеза продукта сравнивается с потребление или чистый синтез предшественника. Продолжающийся синтез этих двух конечных продуктов, один из которых участвует в трансдукции энергии как в мускулатуре, так и в центральной нервной системе, а другой является критическим фактором в механизмах детоксикации, по-видимому, оказывает существенное потенциальное влияние на состояние питания человека.Действительно, данные, полученные у свиней с обедненным белком (Jahoor et al. 1995) и у бессимптомных ВИЧ-инфицированных пациентов (Jahoor et al. 1999), демонстрируют, что поступление белка и цистеина может заметно изменить способность организма поддерживать синтез глутатиона. .

ТАБЛИЦА 7

Потенциальный вклад синтеза функционально важных конечных продуктов в потребности в аминокислотах у взрослых людей

9017 5

9017 5

Возможный вклад синтеза функционально важных конечных продуктов в потребности в аминокислотах у взрослых людей

. глутамат
.
глицин
.
цистеин
.
аргинин
.
метионин
.
Кинетика прекурсора [мкмоль / (кг · сут)]
Плазменный поток
Плазменный поток

42004 3 1800 4 528 3
Чистый синтез 358 5 2730 5 96 6

8
Производство конечного продукта [мкмоль / (кг · г)]
Креатин 9 170
Таурин 10 7
Оксид азота 11 15
Глутатион 12 550 550 550 550 550 . глутамат
.
глицин
.
цистеин
.
аргинин
.
метионин
.
Кинетика прекурсора [мкмоль / (кг · сут)]
Плазменный поток
Плазменный поток

42004 3 1800 4 528 3
Чистый синтез 358 5 2730 5 96 6

8
Производство конечного продукта [мкмоль / (кг · г)]
Креатин 9 170
Таурин 10 7
Оксид азота 11 15
Глутатион 12 550 550 550 550 550

9017 5

9017 5

Вкратце, я попытался изучить термины «незаменимый» и «необязательный» применительно к аминокислотам с трех точек зрения.Традиционный взгляд на питание, который сосредоточен именно на росте, четко отличает аминокислоты, которые должны поступать с пищей, от аминокислот, которые не обязательно должны поступать из этого источника. Метаболическая точка зрения приводит к несколько более сложной интерпретации; это показывает, что могут быть значительные ограничения на синтез некоторых аминокислот, что делает их потенциальными ограничениями для роста. Наконец, функциональная точка зрения не только указывает на важность всех аминокислот для определенных физиологических функций, но также приводит к выводу, что в условиях, когда белок является основным ограничением питания, способность поддерживать синтез некоторых традиционно заменимых аминокислот. может иметь решающее значение для постоянного здоровья и функциональной целостности человека.Очевидно, что сейчас все готово для дальнейшего, более детального количественного исследования этих важных вопросов. Я с нетерпением жду расширения наших знаний о функциях аминокислот, которое выходит за рамки традиционного внимания к белку.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

Бертольд

,

Х. К.

,

Ридс

,

П. Дж.

и

Кляйн

,

П. Д.

(

1995

)

Изотопные доказательства дифференциальной регуляции синтеза аргинина и пролина у человека

.

Метаболизм

44

:

466

473

.

Beaumier

,

L.

,

Castillo

,

L.

,

Ajami

,

AM

и

Young

,

VR

(

1995

)

Промежуточная кинетика нитратного цикла и нормальная кинетика цикла мочевины и «терапевтическое» потребление аргинина людьми

.

г. J. Physiol.

269

:

E884

E896

.

Borman

,

A.

,

Wood

,

TR

,

Balck

,

HC

,

Anderson

,

EG

,

Oesterling

,

MJ

,

, Womack

,

, Womack

,

&

Rose

,

WC

(

1946

)

Роль аргинина в росте с некоторыми наблюдениями за эффектами аргининовой кислоты

.

J. Biol. Chem.

166

:

585

594

.

Brunton

,

JA

,

Bertolo

,

RF

,

Pencharz

,

PB

и

Ball

,

RO

(

1999

)

Пролин не улучшает энтеральное питание, но не устраняет дефицит пролина при энтеральном питании новорожденные поросята

.

г. J. Physiol.

277

:

E223

E231

.

Кастильо

,

Л.

,

Бомье

,

Л.

,

Ajami

,

AM

и

Young

,

VR

(

1996

)

Синтез оксида азота во всем организме у здоровых мужчин, определенный из [ 15 N] аргинина к — [ 15 N] цитруллин маркировка

.

Proc. Natl. Акад. Sci. США

93

:

11460

11465

.

Castillo

,

L.

,

Chapman

,

T. E.

,

Sanchez

,

M.

,

Yu

,

YM

,

Burke

,

JF

,

Ajami

,

AM

,

Vogt

,

J.

и

Young

,

VR

(

as

) кинетика аргинина и цитруллина у взрослых, получающих адекватную диету без аргинина

.

Proc. Natl. Акад. Sci. США

90

:

7749

7753

.

Дэвис

,

Т.А.

,

Фиоротто

,

М.L.

и

Reeds

,

P. J.

(

1993

)

Аминокислотный состав тела и молочного белка изменяется в течение периода сосания у крыс

.

J. Nutr.

123

:

947

956

.

Dewey

,

KG

,

Beaton

,

G.

,

Fjeld

,

C.

,

Lonnerdal

,

B.

и

Reeds

,

P.

(1996)

Потребность младенцев и детей в белке

.

евро. J. Clin. Nutr.

50

(

доп.1

):

S119

S147

.

Fukagawa

,

N. K.

,

Ajami

,

A. M.

и

Young

,

V. R.

(

1996

)

Кинетика метионина и цистеина в плазме у взрослых людей в ответ на внутривенное введение глютатиона

.

г. J. Physiol.

270

:

E209

E214

.

Фуллер

,

М.F.

и

Garlick

,

P. J.

(

1994

)

Потребности человека в аминокислотах: можно ли разрешить спор?

.

Annu. Ред. Nutr

14

:

217

241

.

Fuller

,

MF

,

Milne

,

A.

,

Harris

,

CI

,

Reid

,

TM

и

Keenan

,

R.

(

1994

) Потери кислоты в илеостомической жидкости при безбелковой диете

.

г. J. Clin. Nutr.

59

:

70

73

.

Fuller

,

M. F.

и

Reeds

,

P. J.

(

1998

)

Эндогенный азот в кишечнике

.

Annu. Rev. Nutr.

18

:

385

411

.

Gaull

,

G.

,

Sturman

,

J. A.

&

Raiha

,

N.C.

(

1972

)

Развитие серного обмена у млекопитающих: отсутствие цистатионазы в тканях плода человека

.

Pediatr. Res.

6

:

538

547

.

Hepburn

,

F. N.

и

Bradley

,

W. B.

(

1964

)

Потребность в глутаминовой кислоте и аргинине для высоких темпов роста крыс, получавших аминокислотную диету

.

J. Nutr.

84

:

305

312

.

Хорват

,

К.

,

Джами

,

М.

,

Хилл

,

I.D.

,

Papadimitriou

,

JC

,

Magder

,

LS

и

Chanasongcram

,

S.

(

1996

)

Изокалорийная безглютаминовая диета и морфология и функция тонкой кишки

.

J. Парентеральное энтеральное питание.

20

:

128

134

.

Джексон

,

А. А.

,

Шоу

,

Дж. К.

,

Барбер

,

А.

и

Golden

,

M. H.

(

1981

)

Метаболизм азота у недоношенных детей, вскармливаемых грудным молоком доноров: возможная значимость глицина

.

Pediatr. Res.

15

:

1454

1461

.

Jahoor

,

F.

,

Jackson

,

A.

,

Gazzard

,

B.

,

Philips

,

G.

,

Sharpstone

,

D. Frazer

,

М.E.

и

Heird

,

W.

(

1999

)

Дефицит глутатиона эритроцитов при бессимптомной ВИЧ-инфекции связан со снижением скорости синтеза

.

г. J. Physiol.

276

:

E205

E211

.

Jahoor

,

F.

,

Wykes

,

L. J.

,

Reeds

,

P. J.

,

Henry

,

J. F.

,

del Rosario

,

M.P.

и

Frazer

,

M. E.

(

1995

)

Свиньи с дефицитом белка не могут поддерживать пониженный гомеостаз глутатиона при воздействии стресса воспаления

.

J. Nutr.

125

:

1462

1472

.

Jaksic

,

T.

,

Wagner

,

DA

,

Burke

,

JF

и

Young

,

VR

(

1987

)

Плазменная регуляция кинетики пролина и синтеза пролина человек

.

Обмен веществ

36

:

1040

1046

.

Jaksic

,

T.

,

Wagner

,

DA

,

Burke

,

JF

и

Young

,

VR

(

1991

)

Пациенты с ожогами пролина и здоровые контрольные мужчины предметы

.

г. J. Clin. Нутрь

54

:

408

413

.

Луск

,

г.

(

1922

)

Метаболизм пролина у взрослых мужчин с ожогами и здоровых контрольных субъектов

.

The Science of Nutrition

Johnson Reprint Corporation

New York

, 1976.

Mahan

,

DC

и

Shields

,

RG

, Jr (

1998

)

Состав незаменимых и несущественных аминокислот свиней от рождения до 145 кг массы тела, и сравнение с другими исследованиями

.

J. Anim. Sci.

76

:

513

521

.

Мэтьюз

,

Д. Э.

и

Кэмпбелл

,

Р. Г.

(

1992

)

Влияние потребления белка с пищей на глутамин и азотный обмен глутамина у людей

.

г. J. Clin. Nutr.

55

:

963

970

.

Meier

,

P.

,

Teng

,

C.

,

Battaglia

,

F.C.

и

Меския

,

G.

(

1981

)

Скорость накопления аминокислотного азота и общего азота в плоде ягненка

.

Proc. Soc. Exp. Биол. Med.

167

:

463

468

.

Миллер

,

RG

,

Кешен

,

TH

,

Jahoor

,

F.

,

Shew

,

SB

и

Jaksic

,

T.

(

,

, т.

) эндогенно синтезированных аминокислот у новорожденных

.

J. Surg. Res.

63

:

199

203

.

Murphy

,

J. M.

,

Murch

,

S. J.

&

Ball

,

R.O.

(

1996

)

Пролин синтезируется из глутамата во время внутрижелудочной инфузии свиней, но не во время внутривенной инфузии.

J. Nutr.

126

:

878

886

.

Нейсмит

,

Д.J.

,

Rana

,

S. K.

&

Emery

,

P. W.

(

1987

)

Метаболизм таурина во время репродукции у женщин

.

Hum. Nutr. Clin. Nutr.

41

:

37

45

.

Pellet

,

P. L.

и

Kaba

,

H.

(

1972

)

Аминокислоты туши крысы в ​​условиях определения чистого использования белка

.

J. Nutr.

102

:

61

68

.

Raguso

,

C. A.

,

Pereira

,

P.

и

Young

,

VR

(

1999

)

Исследование с помощью трассирующих индикаторов обязательных окислительных потерь аминокислот у здоровых молодых людей

.

г. J. Clin. Nutr.

70

:

474

483

.

Трости

,

P. J.

,

Burrin

,

D.G.

,

Jahoor

,

F.

,

Wykes

,

L.

,

Henry

,

J.

и

Frazer

,

ME

(

1996

)

Энтеральный глутамат метаболизируется при первом прохождении через желудочно-кишечный тракт детенышей свиней

.

г. J. Physiol.

270

:

E413

E418

.

Камыши

,

P. J.

,

Burrin

,

D. G.

,

Stoll

,

B.

,

Jahoor

,

F.

,

Wykes

,

L.

,

Henry

,

J.

и

Frazer

,

ME

(

1997

)

Энтеральный источник глутамата является предпочтительным для синтез глутатиона слизистой у откормленных поросят

.

г. J. Physiol.

273

:

E408

E415

.

Stoll

,

B.

,

Burrin

,

D. G.

,

Henry

,

J.

,

Yu

,

H.

,

Jahoor

,

F.

&

Reeds

,

P. J.

(

1999

)

Окисление субстрата через портальные дренированные внутренности откормленных поросят

.

г. J. Physiol.

277

:

E168

E175

.

Stoll

,

B.

,

Henry

,

J.

,

Reeds

,

P. J.

,

Yu

,

H.

,

Jahoor

,

F.

и

Burrin

,

D. G.

(

1998

)

Катаболизм доминирует в кишечном метаболизме первого прохождения незаменимых аминокислот у поросят, получавших молочный белок

.

J. Nutr.

128

:

606

614

.

Wakabayashi

,

Y.

,

Yamada

,

E.

,

Yoshida

,

T.

и

Takahashi

,

H.

(

1995

)

аргинин становится незаменимой аминокислотой массивная резекция тонкой кишки крысы

.

J. Biol. Chem.

269

:

32667

32671

.

Widdowson

,

E. M.

,

Southgate

,

D.A.T.

и

Hey

,

E. N.

(

1979

)

Состав тела плода и младенца

.

Visser

,

H.K.A.

ред.

Питание плода и младенца

:

169

177

Martinus Njihoff Publishers London

,

England

.

Williams

,

A. P.

(

1978

)

Аминокислотный, коллагеновый и минеральный состав недожвачных телят

.

J. Agri. Sci. (Камб.).

90

:

617

624

.

Womack

,

M.

и

Rose

,

W. C.

(

1947

)

Роль пролина, гидроксипролина и глутаминовой кислоты в росте

.

J. Biol. Chem.

171

:

37

50

.

Wu

,

G.

,

Davis

,

PK

,

Flynn

,

NE

,

Knabe

,

DA

и

Davidson

,

JT

(

9000) синтез аргинина играет важную роль в поддержании гомеостаза аргинина у растущих свиней после отъема

.

J. Nutr.

127

:

2342

2349

.

Ву

,

г.

,

Отт

,

Т.L.

,

Knabe

,

D. A.

&

Bazer

,

F. W.

(

1999

)

Аминокислотный состав плода свиньи

.

J. Nutr.

129

:

1031

1038

.

Янг

,

V.

и

R & Borgonha

,

S.

(

2000

)

Требования к азоту и аминокислотам: модель потребностей в аминокислотах Массачусетского технологического института

.

J. Nutr.

130

:

1841S

1849

S.

Yu

,

YM

,

Yang

,

RD

,

Matthews

,

DE

,

Wen

M

,

Wen

,

,

JF

,

Bier

,

DM

и

Young

,

VR

(

1985

)

Количественные аспекты азотистого обмена глицина и аланина у молодых мужчин после абсорбции: влияние уровня азота и потребления незаменимых аминокислот

.

J. Nutr.

115

:

399

410

.

© 2000 Американское общество диетологии

Незаменимые аминокислоты и их роль в хорошем здоровье

Незаменимая аминокислота также может называться незаменимой аминокислотой. Это аминокислота, которую организм не может синтезировать самостоятельно, поэтому ее необходимо получать с пищей. Поскольку каждый организм имеет свою физиологию, список незаменимых аминокислот для человека отличается от списка для других организмов.

Роль аминокислот для человека

Аминокислоты являются строительными блоками белков, которые необходимы для формирования наших мышц, тканей, органов и желез. Они также поддерживают метаболизм человека, защищают сердце и позволяют нашему телу заживлять раны и восстанавливать ткани. Аминокислоты также необходимы для расщепления пищи и удаления отходов из нашего организма.

  • Триптофан и тирозин — это аминокислоты, вырабатывающие нейротрансмиттеры.Триптофан производит химический серотонин, регулирующий настроение, и может вызвать сонливость. Тирозин необходим для производства норадреналина и адреналина и заставляет вас чувствовать себя более энергичным.
  • Аминокислота аргинин необходима для производства оксида азота, который снижает кровяное давление и помогает защитить сердце.
  • Гистидин производит ферменты, необходимые для производства красных кровяных телец и здоровых нервов. ]
  • Тирозин используется в производстве гормонов щитовидной железы.
  • Метионин производит химическое вещество под названием SAMe, которое необходимо для метаболизма ДНК и нейромедиаторов.

Питание и незаменимые аминокислоты

Поскольку они не могут вырабатываться организмом, незаменимые аминокислоты должны быть частью рациона каждого человека. Не важно, чтобы все незаменимые аминокислоты были включены в каждый прием пищи, но в течение одного дня рекомендуется есть продукты, содержащие гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и т. Д. и валин.

Лучший способ убедиться, что вы едите достаточное количество продуктов с аминокислотами, — это полноценные белки. К ним относятся продукты животного происхождения, в том числе яйца, гречка, соя и киноа. Даже если вы специально не потребляете полноценные белки, вы можете употреблять различные белки в течение дня, чтобы обеспечить вам достаточное количество незаменимых аминокислот. Рекомендуемая дневная норма белка составляет 46 граммов для женщин и 56 граммов для мужчин.

Основные и условно незаменимые аминокислоты

Незаменимыми аминокислотами для всех людей являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.Некоторые другие аминокислоты являются условно незаменимыми аминокислотами, то есть они необходимы на некоторых стадиях роста или некоторым людям, которые не могут их синтезировать из-за генетики или состояния здоровья.

Помимо незаменимых аминокислот младенцы и растущие дети также нуждаются в аргинине, цистеине и тирозине. Лица с фенилкетонурией (ФКУ) нуждаются в тирозине, а также должны ограничивать потребление фенилаланина. Некоторым группам населения необходимы аргинин, цистеин, глицин, глутамин, гистидин, пролин, серин и тирозин, потому что они либо вообще не могут их синтезировать, либо не могут производить достаточно, чтобы удовлетворить потребности своего метаболизма.

Список незаменимых аминокислот

. глутамат
.
глицин
.
цистеин
.
аргинин
.
метионин
.
Кинетика прекурсора [мкмоль / (кг · сут)]
Плазменный поток
Плазменный поток

42004 3 1800 4 528 3
Чистый синтез 358 5 2730 5 96 6

8
Производство конечного продукта [мкмоль / (кг · г)]
Креатин 9 170
Таурин 10 7
Оксид азота 11 15
Глутатион 12 550 550 550 550 550 . глутамат
.
глицин
.
цистеин
.
аргинин
.
метионин
.
Кинетика прекурсора [мкмоль / (кг · сут)]
Плазменный поток
Плазменный поток

42004 3 1800 4 528 3
Чистый синтез 358 5 2730 5 96 6

8
Производство конечного продукта [мкмоль / (кг · г)]
Креатин 9 170
Таурин 10 7
Оксид азота 11 15
Глутатион 12 550 550 550
Незаменимые аминокислоты Незаменимые аминокислоты
гистидин аланин
изолейцин аргинин *
лейцин аспарагиновая кислота
лизин цистеин *
метионин глутаминовая кислота
фенилаланин глутамин *
треонин глицин *
триптофан пролин *
валин серин *
тирозин *
аспарагин *
селеноцистеин
* условно-существенная

9 незаменимых аминокислот: что это такое и зачем они нужны?

Мы все слышали об аминокислотах, но что они собой представляют и почему они необходимы для нашего питания?

Аминокислоты — строительные блоки белка.Это органические соединения, содержащие аминогруппу (-Nh3) и карбоксигруппу (-COOH). Поскольку около двадцати процентов человеческого тела состоит из белков, аминокислоты составляют значительную часть наших клеток, мышц и тканей.

Аминокислоты являются неотъемлемой частью биологических процессов, происходящих в нашем организме, таких как придание клеткам их структуры, транспортировка и хранение питательных веществ, а также формирование наших органов, желез, артерий и мышц. Они также необходимы для заживления ран и восстановления тканей, особенно мышц, кожи, костей и волос.

Всего существует 23 протеиногенных (строящих белок) аминокислоты и более 100 природных аминокислот, которые не являются протеиногенными. Из протеиногенных аминокислот 9 незаменимы, 11 несущественных и 3 из которых не встречаются в организме человека.

Незаменимые аминокислоты не производятся организмом естественным образом, поэтому они должны поступать из продуктов, которые мы едим. Девять основных аминокислот: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.Каждая из этих аминокислот обладает уникальными свойствами и играет важную роль в наших рабочих органах.

Незаменимые аминокислоты производятся в организме человека, поэтому они не являются необходимыми для нашего питания. Есть также три аминокислоты (селеноцистеин, пирролизин и N-формилметионин), которые не встречаются у людей, но являются нестандартными аминокислотами, строящими белок, которые содержатся в растениях и других организмах.

Аминокислоты с разветвленной цепью (BCAA) относятся к трем незаменимым аминокислотам: лейцину, изолейцину и валину.Это аминокислоты, которые имеют алифатические боковые цепи с разветвленной атомной структурой. Аминокислоты с разветвленной цепью составляют 35% незаменимых аминокислот в наших мышцах.

Так как же получить нужные аминокислоты и что именно они делают? Вот краткое описание каждой из этих мощных маленьких молекул.

9 незаменимых аминокислот

ЛЕЙЦИН

Лейцин помогает стимулировать мышечную силу и рост, а также помогает сохранить мышечную массу при соблюдении диеты.Лейцин — основная аминокислота, непосредственно ответственная за активацию незаменимого соединения в мышцах, называемого mTOR (мишень рапамицина у млекопитающих), которое непосредственно отвечает за активацию синтеза белка. Лейцин является основным строительным материалом для мышц и помогает синтезировать больше.
Лейцин также помогает регулировать уровень сахара в крови, снижая уровень инсулина в организме во время и после упражнений, и оказывает положительное влияние на наш мозг и нейротрансмиттеры.

Источники лейцина: сыр, соевые бобы, говядина, свинина, курица, тыква, семена, орехи, горох, тунец, морепродукты, бобы, сывороточный белок, растительные белки и т. Д.

ИЗОЛЕУЦИН

Изолейцин — это изолированная форма лейцина, которая помогает организму вырабатывать гемоглобин. Гемоглобин переносит железо в кровь и регулирует уровень сахара в крови, который сжигается для получения энергии в мышцах во время упражнений. Изолят сывороточного протеина от природы богат изолейцином.

Изолейцин также способствует росту азота в мышечных клетках, который составляет значительную часть нашей структуры и ДНК.

Источники изолейцина: соя, мясо и рыба, молочные продукты и яйца, кешью, миндаль, овес, чечевица, фасоль, коричневый рис, бобовые, семена чиа.

ЛИЗИН

Лизин — одна из основных аминокислот, которая отвечает за восстановление и рост мышц, а также повышает иммунную систему организма. Лизин также помогает усвоению других минералов в организме и необходим для синтеза коллагена, который является основным элементом, необходимым для образования соединительной ткани и костей в организме.

Источники лизина: яиц, мясо, птица, фасоль, горох, сыр, семена чиа, спирулина, петрушка, авокадо, миндаль, кешью, сывороточный протеин.



МЕТИОНИН

Метионин важен для роста новых кровеносных сосудов и роста мышц, и он содержит серу, которая является неотъемлемой частью здоровья тканей и мышц. Без достаточного количества серы в организме люди могут быть подвержены артриту, повреждению тканей и иметь проблемы с заживлением. Метионин также способствует росту мышц и образованию креатина, который необходим для получения энергии. Метионин также может растворять жир в организме и уменьшать жировые отложения в печени.

Источники метионина: мясо, рыба, сыр, молочные продукты, бобы, семена, семена чиа, бразильские орехи, овес, пшеница, инжир, цельнозерновой рис, фасоль, бобовые, лук и какао.

ФЕНИЛАЛАНИН

Фенилаланин превращается в организме в аминокислоту тирозин, которая необходима для выработки белков и химических веществ мозга, таких как адреналин, L-допа, норадреналин и гормоны щитовидной железы. Таким образом, фенилаланин оказывает большое влияние на наше настроение и психическое здоровье.

Источники фенилаланина: молоко и молочные продукты, мясо, рыба, курица, яйца, спирулина, водоросли, тыква, фасоль, рис, авокадо, миндаль, арахис, киноа, инжир, изюм, листовая зелень, большинство ягод, оливки и семена.

ТРЕОНИН

Треонин поддерживает функцию здоровья иммунной системы, печени, сердца и центральной нервной системы. Он также необходим для создания глицина и серина, аминокислот, необходимых для производства эластина, коллагена и мышечной ткани. Он необходим для здоровой работы мышц и помогает сохранять их сильными и эластичными. Треонин также помогает укрепить кости и может помочь ускорить заживление ран и повреждений тканей.

Источники треонина: нежирное мясо, сыр, орехи, семена, чечевица, кресс-салат и спирулина, тыква, листовая зелень, семена конопли, семена чиа, соевые бобы, миндаль, авокадо, инжир, изюм и киноа.

ТРИПТОФАН

Когда триптофан поглощается организмом, он в конечном итоге превращается в серотонин — химическое вещество, которое делает нас счастливыми, является нейромедиатором и помогает снизить уровень стресса и депрессии. Триптофан также известен тем, что оказывает расслабляющее действие на организм и способствует здоровому режиму сна, а также поддерживает функции мозга и нервной системы.

Источники триптофана: шоколад, молоко, сыр, индейка, красное мясо, йогурт, яйца, рыба, птица, нут, миндаль, семечки подсолнечника, пепитас, спирулина, бананы и арахис.

ВАЛИН

Валин необходим для оптимального роста и восстановления мышц. Он помогает снабжать мышцы дополнительной глюкозой, отвечающей за выработку энергии во время физической активности, что делает ее необходимой для выносливости и общего здоровья мышц. Он также помогает улучшить работу нервной системы и когнитивных функций, а также излечивает метаболические заболевания и заболевания печени.

Источники валина включают: сыр, красное мясо, курицу, свинину, орехи, бобы, шпинат, бобовые, брокколи, семена, семена чиа, цельнозерновые, инжир, авокадо, яблоки, чернику, клюкву, апельсины и абрикосы.

ГИСТИДИН

Гистидин поддерживает здоровье мозга и поддерживает нейротрансмиттеры (в частности, нейротрансмиттер гистамин). Это также помогает детоксикации организма, производя красные и белые кровяные тельца, которые необходимы для общего здоровья и иммунитета.
Гистидин может даже помочь защитить ткани от повреждений, вызванных радиацией или тяжелыми металлами.

Источники гистидина: красное мясо, сыр, белое мясо и птица, морепродукты, соя, фасоль, бобовые, семена чиа, гречка, картофель.

Лучший источник аминокислот?

На рынке есть много добавок, которые были произведены химическим способом. Это включает синтезированные аминокислоты, известные как BCAA. Это можно сделать с помощью химического синтеза или экстракции из источников белка. Синтезированные аминокислоты различаются по действию в зависимости от способа, которым они были созданы с помощью генной инженерии. Мы рекомендуем получать аминокислоты из натурального источника белка, а не из синтезированного заменителя.

Сывороточный протеин — один из немногих источников, которые естественным образом содержат все 20 аминокислот, что делает его полноценным протеином.

Смеси изолятов сывороточного протеина

Bare Blends имеют превосходный аминокислотный профиль и особенно неденатурированы. Они обеспечивают наш организм наиболее функциональным белком для восстановления, восстановления и наращивания мышц, а также повышают наш иммунитет.

Существуют также безмолочные протеиновые порошки, которые являются отличной альтернативой сывороточному протеину для тех, кто придерживается растительной диеты. Фактор удобства наших смесей веганского протеина или смесей сывороточного протеина очень важен — так как после тренировки важно сразу же подпитывать наш организм аминокислотами, чтобы они могли немедленно начать восстановление наших мышц.

Эти смеси также очень удобны для быстрого приготовления насыщенных питательными веществами смузи на завтрак, когда у вас нет времени ни на что другое. Смешивание порции нашего WPI с молочным / ореховым молоком или жидкостью по вашему выбору с некоторыми замороженными фруктами — это вкусный здоровый завтрак, который поддержит вас и содержит белок и аминокислоты, необходимые вашему организму для восстановления и оптимальной работы.

Ознакомьтесь с нашим руководством по протеину для женщин, чтобы узнать больше о том, как правильно выбрать протеиновый порошок.

Источники:

Незаменимые аминокислоты в первую очередь отвечают за аминокислотную стимуляцию анаболизма мышечного белка у здоровых пожилых людей.

Восстановление незаменимых аминокислот и мышечного белка после упражнений с отягощениями

Аминокислоты с разветвленной цепью

метионин

непротеиногенные аминокислоты

лейцин

Аминокислоты и белки в образовании гемоглобина. 2. Изолейцин

Что такое лизин?

Треонин

2,25 Типы аминокислот

Наш организм использует 20 аминокислот для синтеза белков.Эти аминокислоты можно разделить на незаменимые, несущественные или условно незаменимые. В таблице ниже показано, как классифицируются 20 аминокислот.

Таблица 2.251 Незаменимые, условно незаменимые и заменимые аминокислоты 1

Essential Условно необходимые Несущественные
Гистидин Аргинин Аланин
Изолейцин Цистеин Аспарагин
лейцин Глютамин Аспарагиновая кислота или аспартат
Лизин Глицин Глутаминовая кислота или глутамат
метионин Пролин Серин
фенилаланин Тирозин
Треонин
Триптофан
валин

Организм не может синтезировать девять аминокислот.Таким образом, очень важно, чтобы они использовались в рационе. В результате эти аминокислоты известны как незаменимые или незаменимые аминокислоты. В качестве примера того, как аминокислоты были определены как незаменимые, д-р Уильям К. Роуз из Университета Иллинойса обнаружил, что треонин был необходим, давая студентам-выпускникам университета различные диеты, как описано в следующей ссылке.

Незаменимые или незаменимые аминокислоты могут вырабатываться в нашем организме, поэтому нам не нужно их потреблять.Условно незаменимые аминокислоты становятся незаменимыми для людей в определенных ситуациях. Примером состояния, при котором аминокислота становится незаменимой, является болезнь фенилкетонурия (PKU). Люди с PKU имеют мутацию фермента фенилаланингидроксилазы, который обычно добавляет спиртовую группу (OH) к аминокислоте фенилаланину с образованием тирозина, как показано ниже.

Рис. 2.251 Фенилкетонурия (PKU) возникает в результате мутации фермента фенилаланингидроксилазы 2,3

Поскольку люди с фенилкетонурией не могут синтезировать тирозин, он становится для них незаменимым.Таким образом, тирозин является условно незаменимой аминокислотой. Люди с фенилкетонурией должны придерживаться диеты с очень низким содержанием белка и избегать альтернативного подсластителя аспартама, поскольку он может расщепляться на фенилаланин. Если люди с фенилкетонурией потребляют слишком много фенилаланина, фенилаланин и его метаболиты могут накапливаться и вызывать повреждение мозга и серьезную умственную отсталость. Препарат Куван был одобрен для применения у пациентов с фенилкетонурией в 2007 году с низким уровнем активности фенилаланингидроксилазы. Вы можете узнать больше об этом препарате, перейдя по ссылке ниже.

Ссылки и ссылки

1. Аноним. Нормы потребления энергии, углеводов, клетчатки, жиров, жирных кислот, холестерина, белков и аминокислот (макроэлементов) с пищей. Белок и аминокислоты. Институт медицины, питания и питания. 2005 г. http://books.nap.edu/openbook.php?record_id=10490&page=589

2. https://en.wikipedia.org/wiki/Phenylalanine#/media/File:L-Phenylalanin_-_L-Phenylalanine.svg

3. https://en.wikipedia.org/wiki/Tyrosine#/media/File:L-Tyrosin_-_L-Tyrosine.svg

Ссылки

Открытие треонина Уильямом К. Роузом — http://www.jbc.org/content/277/37/e25.full

Куван — http://www.kuvan.com/

Незаменимые аминокислоты

Аминокислоты — это органические соединения, содержащие как аминогруппу, так и карбоксильную группу. Согласно Тиллери и др., Человеческое тело может синтезировать все аминокислоты, необходимые для построения белков, за исключением десяти, называемых «незаменимыми аминокислотами», обозначенных звездочками на иллюстрациях аминокислот.Адекватная диета должна содержать эти незаменимые аминокислоты. Обычно они поставляются в виде мясных и молочных продуктов, но если они не потребляются, необходимо проявлять осторожность, чтобы обеспечить их достаточное количество. Они могут быть снабжены комбинацией злаков (пшеница, кукуруза, рис и т. Д.) И бобовых (фасоль, арахис и т. Д.). Тиллери указывает, что ряд популярных этнических продуктов включает такую ​​комбинацию, так что в одном блюде можно надеяться получить десять незаменимых аминокислот. Мексиканская кукуруза и фасоль, японский рис и соевые бобы, а также красная каджунская фасоль и рис являются примерами таких случайных комбинаций.

Биологический проект Университета Аризоны дает следующее резюме: «10 аминокислот, которые мы можем производить, — это аланин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин. Тирозин производится из фенилаланина, поэтому, если в рационе недостаточно фенилаланина, также потребуется тирозин. Незаменимые аминокислоты (которые мы не можем производить внутренне) — это аргинин (необходим для молодых, но не для взрослых), гистидин, изолейцин, лейцин, лизин, метионин. , фенилаланин, треонин, триптофан и валин.Эти аминокислоты необходимы в рационе. Растения, конечно, должны уметь производить все аминокислоты. С другой стороны, у людей нет всех ферментов, необходимых для биосинтеза всех аминокислот ».

Отсутствие достаточного количества даже 1 из 10 незаменимых аминокислот имеет серьезные последствия для здоровья и может привести к деградации белков организма. Мышечные и другие белковые структуры могут быть разобраны для получения одной необходимой аминокислоты.«В отличие от жира и крахмала, человеческий организм не накапливает лишние аминокислоты для последующего использования — аминокислоты должны присутствовать в пище каждый день» (Biology Project)

Индекс

Биохимические концепции

Химические концепции

Ссылки
Шипман, Уилсон и Тодд
Ch 15

Тиллери, Энджер и Росс
Ch 14

Биологический проект
University of Arizona

00 Essential Acids Справочник

Определение

Незаменимые аминокислоты (EAA) составляют группу из девяти аминокислот, которые не могут вырабатываться в организме ( de novo ), но должны поступать в организм как диетический белок.Строительные блоки белков, аминокислоты, соединяются вместе для образования полимерных цепей или свернутых белков с огромным набором функций. Есть три группы аминокислот: незаменимые, заменимые и условные.

Незаменимая аминокислота L-лизин

Список из 9 незаменимых кислот

Этот список из 9 незаменимых кислот кратко описывает роль каждой из них в организме человека.

Гистидин

Гистидин является незаменимой аминокислотой для детей; однако это не относится к взрослым, если не нарушена функция почек. Гистидин необходим для роста человека. Он также важен для поддержания нервной системы и является метаболитом нейромедиатора гистамина. Наиболее важная роль гистидина заключается в метаболизме и регулировании тяжелых металлов, включая железо, медь, молибден, цинк и марганец. В организме с низким содержанием гистидина, но с высоким содержанием микроэлементов быстро истощаются запасы гистидина, вызывая дефицит минеральных ферментов.

Гистидин

Изолейцин

Изолейцин известен тем, что он используется в добавках для спортсменов на выносливость.Три незаменимые аминокислоты изолейцин, лейцин и валин составляют до 70% всех белков человека. Изолейцин играет роль в восстановлении тканей, синтезе гемоглобина и регулировании уровня глюкозы в крови и энергии. Изолейцин также можно безопасно употреблять в относительно больших количествах. делает его популярным ингредиентом спортивных добавок.

Изолейцин

Лейцин

Лейцин — одна из трех аминокислот с разветвленной цепью. Лейцин, изолейцин и валин составляют группу незаменимых аминокислот BCAA.Лейцин способствует метаболизму жиров без снижения мышечной массы. По этой причине лейцин часто используется в качестве добавки для похудания, но лучше всего работает в сочетании с энергичными упражнениями . У веганов, как правило, низкий уровень лейцина, поскольку эта аминокислота в основном содержится в мясных и молочных продуктах.

Лейцин

Лизин

Лизин необходим для усвоения кальция и, следовательно, необходим для здорового функционирования мышц и нервной системы. Лизин дополнительно способствует выработке коллагена и карнитина.Веганы и вегетарианцы могут найти источники лизина в бобовых. Дефицит лизина может привести к таким симптомам, как замедленный рост, усталость, тошнота, головокружение и бесплодие. Его можно использовать для снижения количества приступов у неврологических пациентов; однако диеты с ограничением лизина рекомендуются при пиридоксинзависимой эпилепсии .

Лизин

Метионин

Метионин содержится в мясных, молочных и цельнозерновых продуктах и, следовательно, не обязательно требуется в форме добавок.Неправильное преобразование метионина может привести к атеросклерозу, поскольку эта незаменимая аминокислота играет роль в биосинтезе липидов и жирных кислот. Метионин — одна из двух аминокислот, содержащих элемент серу. — вторая — цистеин. Сера играет важную роль в синтезе антиоксидантов. Добавки метионина в диетической или порошковой форме полезны для женщин и мужчин, страдающих от преобладания эстрогенов, или для людей, страдающих заболеваниями печени. Тем не менее, недавние исследования положительного влияния диет с низким содержанием метионина на улучшение исходов рака и долголетия клеток могут помешать работе метиониновых добавок.Веганам и вегетарианцам не о чем беспокоиться, поскольку в их рационе естественно мало этой незаменимой аминокислоты.

Метионин

Фенилаланин

Фенилаланин является предшественником тирозина, адреналина и норадреналина, последний из которых повышает умственную активность и память, улучшает настроение и подавляет аппетит. Фенилкетонурия относится к недостатку фермента, который позволяет организму использовать фенилаланин. Эта неспособность использовать фенилаланин приводит к тому, что высокий уровень этой аминокислоты циркулирует в организме и не позволяет ее использовать.Результатом является тяжелая необратимая умственная отсталость , если это заболевание не лечить после первых трех недель жизни .

Треонин

Треонин работает вместе с аспарагиновой кислотой и метионином, способствуя метаболизму жиров в печени и предотвращая ожирение печени (стеатоз). На приведенном ниже изображении КТ вверху показана здоровая печень, а под ней — сканирование жировой печени. Эта незаменимая аминокислота также является неотъемлемой частью здоровья нервной системы, и добавки часто принимают пациенты с рассеянным склерозом и болезнью Лу Герига.Треонин необходим для синтеза глицина и серина и, таким образом, способствует выработке коллагена, эластина и мышечной ткани. Более недавние исследования рассматривают его использование в качестве терапии колита .

Стеатоз печени — нижнее изображение

Триптофан

Триптофан — одна из наиболее узнаваемых аминокислотных добавок и один из основных ингредиентов пищевых добавок, улучшающих уровень энергии и настроение. Причина, по которой триптофан стал настолько популярным в этой области здравоохранения, заключается в его роли в качестве предшественника серотонина; он также является предшественником мелатонина, ферментов и структурных белков, и низкие уровни, возможно, частично ответственны за возникновение мигрени.В результате недавних исследований, посвященных роли серотонина, производимого в кишечнике, и гематоэнцефалического барьера, роль триптофана оценивается как очень важная . В настоящее время он используется для успешного лечения депрессивных состояний в период менопаузы, успокаивания детей с диагнозом СДВГ, уменьшения беспокойства и облегчения симптомов синдрома беспокойных ног.

Валин

Валин, лейцин и изолейцин образуют группу аминокислот с разветвленной цепью (BCAA) , которые имеют структуру, отличную от других типов аминокислот, и часто продаются в виде групповой упаковки в индустрии пищевых добавок.Это одна из незаменимых аминокислот, наиболее легко доступных для веганов и вегетарианцев, и в достаточном количестве она содержится в зеленых, листовых овощах и фасоли. Валин играет множество положительных ролей в организме человека. Его действие на нервную систему успокаивает в моменты стресса и улучшает качество сна. Когнитивные функции также могут быть улучшены. Валин способствует восстановлению, восстановлению и росту всех типов мышечной ткани и поэтому часто используется спортсменами, работающими на выносливость. Показано, что он снижает аппетит, а также является ингредиентом многих добавок для похудания.

Валин

Незаменимые аминокислоты

В организме вырабатывается 12 заменимых аминокислот , хотя многие полагают, что дополнительные источники можно найти в виде аминокислотных добавок или диет с высоким содержанием белка.

Добавить комментарий

Ваш адрес email не будет опубликован.

Правильное питание - источник здоровья
При полном или частичном использовании материалов активная ссылка на шефмастер-птз.рф обязательна
© 2022 Все права защищены