Разное

Тип мышечной ткани: Мышечная и нервная ткани — урок. Биология, 8 класс.

Содержание

Капилляризация мышц, их морфология и патогенез метаболического синдрома | Krotkiewski

Аннотация

Морфологические изменения в мышцах, связанные с уменьшением количества быстрых, окислительных мышечных волокон IIА типа и увеличением количества быстрых, гликолитических мышечных волокон IIБ типа, а также нарушение кровоснабжения мышечной ткани, рассматривались нами при многих патологических состояниях, связанных с инсулинорезистентностью. Нарушение тканевого кровоснабжения, тесно связанного с уменьшением чувствительности к инсулину и степенью гипертензии, наступает на сравнительно раннем этапе, в то время как увеличение количества мышечных волокон типа IIБ происходит позже и связано с повышением концентрации атерогенных факторов и гиперлипидемией. Мышечные волокна (МВ) типа IIБ — наиболее нечувствительный к инсулину тип МВ и не адоптирован к окислению жира во время мышечной работы. Это способствует дальнейшему развитию инсулиновой резистентности и ожирению; при этом избыток жирных кислот направляется в печень, вторично нарушая ее функцию. Подавляет работу печени также избыточное количество инсулина. Гиперинсулинемия ведет к угнетению синтеза таких специфических протеинов, как белок, транспортирующий тестостерон (глобулин, связывающий половой гормон). В результате повышенная концентрация свободного тестостерона ведет к вирилизации женщин и дальнейшему развитию инсулиновой нечувствительности. В отличие от существовавшей ранее концепции, отводившей основную роль интраабдоминальной жировой ткани, мышцы и печень должны рассматриваться также как органы, участвующие в патогенезе и развитии метаболического синдрома.

Морфологические изменения в мышцах, связанные с уменьшением количества быстрых, окислительных мышечных волокон ПА типа и увеличением количества быстрых, гликолитических мышечных волокон ПБ типа, а также нарушение кровоснабжения мышечной ткани, рассматривались нами при многих патологических состояниях, связанных с инсулиновой резистентностью.
Нарушение тканевого кровоснабжения, тесно связанного с уменьшением чувствительности к инсулину и степенью гипертензии, наступает на сравнительно раннем этапе, в то время как увеличение количества мышечных волокон типа ПБ происходит позже и связано с повышением концентрации атерогенных факторов и гиперлипемией.
Мышечные волокна (МВ) типа ПБ — наиболее нечувствительный к инсулину тип МВ и не адоптирован к окислению жира во время мышечной работы. Это способствует дальнейшему развитию инсулиновой резистентности и ожирению; при этом избыток жирных кислот направляется в печень, вторично нарушая ее функцию. Подавляет работу печени также избыточное количество инсулина. Гиперинсулинемия ведет к угнетению синтеза таких специфических протеинов, как белок, транспортирующий тестостерон (глобулин, связывающий половой гормон). В результате повышенная концентрация свободного тестостерона ведет к вирилизации женщин и дальнейшему развитию инсулиновой нечувствительности.
В отличие от существовавшей ранее концепции, отводившей основную роль интраабдоминальной жировой ткани, мышцы и печень должны рассматриваться также как органы, участвующие в патогенезе и развитии метаболического синдрома.
Жировая ткань
Взаимосвязь ожирения, гипертензии и диабета была обнаружена еще в 40-х годах, когда начали входить в употребление такие термины, как diabesity (diabetes + obesity), т. е. диабет и ожирение; obitension (obesity + hypertension), т. е. ожирение и гипертензия.
В это же время начинается изучение как потенциальной патогенетической роли жировой ткани, так и значения ее топографии [37]. Сейчас нам известна связь между ожирением и такими факторами метаболического риска, как гиперхолестеринемия, гипертриглицеридемия, гипергликемия, гиперинсулинемия, гипертензия и диабет [16]. Также мы знаем о связи между величиной избыточной массы и распределением жировой ткани [13].
Не так давно была установлена прогностическая роль распределения жировой ткани при инфаркте миокарда, инсульте, диабете и внезапной смерти [27, 28].
Инсулиновая резистентность жировой ткани главным образом связана с транспортом глюкозы. Более того, наступлению инсулиновой резистентности способствует ухудшение глюкозонакапливающей способности мышечной ткани [29]. А так как метаболизм глюкозы в жировой ткани играет количественно малую роль, то патогенетическая роль висцерального жира представляется лишь фактором, способствующим развитию инсулиновой резистентности в печени. Таким образом, патогенез метаболического синдрома может быть представлен как последовательность патогенетических изменений в жировой ткани, печени и мышцах (рис. 1).
Печень
Перегрузка печени свободными жирными кислотами из висцеральной жировой ткани ведет к постепенному развитию в ней стеатоза. Нарушение некоторых других функций печени совпадает с уменьшением инсулинового клиренса и гипергликемией, способствующими, например, понижению концентрации глобулина, связывающего половой гормон. Низкая концентрация этого белка в свою очередь вызывает увеличение концентрации свободного тестостерона в плазме. Считается, что у тучных женщин [5] и женщин с синдромом поликистозных яичников [8] свободный тестостерон способствует развитию инсулиновой нечувствительности. Высокий уровень свободного тестостерона ведет к повышению активности печеночной триглицеридлипазы и низкой концентрации липопротеидов высокой плотности (ЛПВП) в плазме [36]. Малая концентрация ЛПВП-холестерина — характерный признак абдоминального ожирения [4]. Интенсивное снабжение печени свободными жирными кислотами из висцеральной жировой и мышечной тканей ведет к гипертриглицеридемии и повышению уровня липопротеидов низкой плотности и общего холестерина, что также является типичными признаками абдоминального ожирения.

Рис. 1. Основные пути развития метаболического синдрома.
Мышцы
С определенными специфическими отступлениями [31] считается, что 70% глюкозы, поступающей в венозную систему, метаболизируется в мышцах [3]. Следовательно, с высокой степенью вероятности можно утверждать, что инсулиновая резистентность инициируется и развивается в мышцах.
Снабжение мышечных волокон глюкозой и ее дальнейший транспорт в мышечные клетки опосредуются инсулином, но усваиваемость глюкозы в большой степени зависит от количества капилляров и их проницаемости. Чем больше капилляров вокруг мышечного волокна (или меньше площадь поперечного сечения волокна, снабжаемого одним капилляром), тем больше транспорт различных метаболитов в клетку. В особенности это положение относится к транспорту таких основных субстратов, как глюкоза и свободные жирные кислоты (СЖК), а также к транспорту инсулина.
Эндотелий капилляров содержит большие запасы инсулина, и капилляры контролируют дозу поступления инсулина в мышцы [38]. Это инсулиновый «пул» капилляров. Инсулин же, с другой стороны, в зависимости от дозы оказывает влияние на кровоснабжение мышц [26]. До сих пор еще неизвестно, какие факторы управляют выходом инсулина из эндотелия капилляров. Происходит ли это благодаря увеличению капиллярной проницаемости, ведущей к физической диффузии инсулина? Или существуют другие факторы, дозирующие поступление инсулина в зависимости от метаболических потребностей мышечной ткани? Является ли дозирование активным процессом или это только пассивная физико-химическая диффузия — этот вопрос остается также неизвестным.
Так как диффузия зависит от количества капилляров и площади поперечного сечения мышечных волокон, снабжаемых ими, мы будем использовать термин «расстояние диффузии».
Количество капилляров зависит, с одной стороны, от гормональных факторов (инсулин, тестостерон), а с другой — от влияния ишемии и других факторов, связанных с мышечной работой.
При физической работе или тренировках происходит пролиферация или открытие ранее закрытых капилляров [15, 19, 21, 30]. Замечено, что метаболические адаптации, связанные с повышением инсулиновой чувствительности и понижением артериального давления, коррелируют с увеличением количества капилляров [21]. Пролиферация капилляров — физиологический адаптационный процесс при длительной мышечной работе — значительно подавляется при диабете, что частично объясняет отсутствие наступления глюкозного гомеостаза у больных диабетом при физических нагрузках [30]. Подобным образом подавляется и существующее в норме инсулинстиму- лированное улучшение кровоснабжения [26].
Как выше было сказано, инсулин способен улучшать кровоснабжение мышечной ткани и таким образом усиливать собственный эффект, оцениваемый по транспорту глюкозы. Это происходит благодаря включению в работу постоянно существующих, но ранее закрытых капилляров, в то время как регулярный прием препаратов инсулина ведет к пролиферации капилляров [7].
Таким образом, инсулиновая резистентность развивается из-за недостаточного тканевого кровоснабжения или подключения в работу капилляров с дефектами, что приводит к вторичному подавлению инсулинстимулированного кровоснабжения. Например, подавление инсулинстимулированного кровоснабжения было рассмотрено при диабете II типа [19, 26], ожирении [21, 25] и гипертензии [2].
При обследовании тучных женщин [6, 12, 20, 24] и тучных мужчин [14, 18, 22, 23] нами выявлена положительная корреляция между объемом абдоминальной жировой ткани (высокий массоростовой показатель) и процентной долей мышечных волокон типа IIБ. В то же время обнаружена отрицательная корреляция между количеством капилляров и массоростовым показателем. Таким образом, определенное распространение жировой ткани связано со специфическим распределением мышечных волокон и их кровоснабжением. Анализ взаимосвязи метаболических параметров распределения типов мышечных волокон показывает, что процентная доля мышечных волокон ПБ типа положительно коррелирует с концентрацией инсулина, глюкозы, холестерина и триглицеридов. Между этими же параметрами и количеством капилляров существует отрицательная корреляция. Особенно яркая прямая зависимость обнаружена между количеством капилляров и инсулиновой чувствительностью [18, 22]. Мышечная морфология, с другой стороны, демонстрирует существенные корреляции с параметрами, связанными с плазменными липидами. Также была выявлена сильная положительная корреляция между процентной долей мышечных волокон I, ПБ типа и уровнем систолического и диастолического давления (рис. 2, б). Существенная (обратная) зависимость выявлена между систолическим и диастолическим давлением и количеством капилляров (рис. 2, а).
Расстояние диффузии значительно коррелирует с артериальным давлением, измеренным в покое и во время субмаксимального теста, а также с инсулиновой чувствительностью, измеренной локально путем оценки гликогенсинтетазной активности (рис. 3).
Мышечная морфология, липиды и субстрат утилизации во время мышечной работы
Мышечные волокна типа ПБ приспособлены для окисления глюкозы преимущественно в анаэробных условиях. Выявлено, что у тучных пациентов (с высоким массоростовым показателем) дыхательный коэффициент даже во время умеренной физической нагрузки находится в соответствии с процентной долей мышечных волокон ПБ типа [22].
Между мышечной морфологией и атерогенными факторами, а также уровнем липидов в крови выявлена значительная зависимость. Особого внимания заслуживает положительная корреляция между процентной долей мышечных волокон ПБ типа и концентрацией апо-В, ЛПНП, триглицеридов. А между процентной долей мышечных волокон ПБ типа и концентрацией апо-А и ЛПВП-холестерина обнаружена обратная зависимость [17, 18]. Именно эти факты указывают на возможное участие печени в процессе. В наших предыдущих работах мы

Систолическое давление, ммрт.ст.
Рис. 2. Систолическое давление отрицательно коррелирует с процентной долей мышечных волокон I типа (я) и положительно коррелирует с площадью поперечного сечения мышечного волокна, снабжаемого одним капилляром (иначе говоря, отрицательно коррелирует с количеством капилляров) (б).
Здесь и на рис. 3—5: МВ — мышечные волокна.

упоминали о связи между процентной долей мышечных волокон ПБ типа и концентрацией свободного тестостерона [24, 32, 33]. Как отмечено выше, тестостерон влияет на активность печеночной триглицеридлипазы [36]. Активность этого энзима у обследованных нами тучных пациентов положительно коррелирует с процентной долей мышечных волокон ПБ типа и отрицательно коррелирует с концентрацией глобулина, связывающего половой гормон. Иными словами, у тучных женщин наблюдаются высокая концентрация тестостерона, высокая активность печеночной триглицеридлипазы и высокий процент мышечных волокон ПБ типа. Так как высокий процент мышечных волокон ПБ типа и недостаточное тканевое кровоснабжение связаны с инсулиновой нечувствительностью и понижением печеночного инсулинового клиренса, то существуют предпосылки для развития гиперинсулинемии. В свою очередь гиперинсулинемия ведет к нарушению синтеза глобулина, связывающего половой гормон [34]. С другой стороны, предполагается, что функционирование печени подавляется при увеличении концентрации СЖК в v. porta (см. рис. 1).
Концентрация СЖК в портальной вене зависит от наличия висцеральной жировой ткани в непосредственной близости от этого региона и понижения окисления СЖК в мышечной ткани во время физической работы. Таким образом, весь этот

Рис. 4. Распределение разных типов мышечных волокон (медленные — I тип; быстрые, окислительные — ПА тип и быстрые, гликолитические — ПБ тип) в m. lateralis vastus у женщин при различных патологических состояниях (для пациентов с инсультом данные относятся к гемипаретичной ноге).
процесс ведет к повышению концентрации СЖК в области портальной вены. Порочный круг замыкается.
При других патологических состояниях также отмечается связь между морфологией мышц и количеством капилляров в них. Прежде всего это относится к состояниям, характеризующимся инсулиновой резистентностью, гипертензией [10, 21], к диабету II типа [1, 19], заболеваниям коронарной артерии [11] и послеинсультному состоянию [9] (рис. 4). Подобные результаты получены также у больных, лечившихся тестостероном [32, 33], и у больных с синдромом Кушинга [17, 35].
Являются ли морфологические изменения и недостаточное кровоснабжение первичным фактором, а инсулиновая

Активность гликогенсинтетаз, %
Рис. 3. Увеличение фракционной скорости инсулинзависимой гликогенсинтетазы (являющейся мерой инсулиновой чувствительности) отрицательно коррелирует с площадью поперечного сечения мышечного волокна, снабжаемого одним капилляром.

Рис. 5. Понижение уровня систолического давления при проведении пролонгированного теста с физической нагрузкой положительно коррелирует с увеличением количества капилляров (или с уменьшением площади поперечного сечения мышечного волокна, снабжаемого одним капилляром).

Рис. 6. Общая сосема развития метаболического синдрома

резистентность вторичным, или наоборот, или оба типа этих изменений вызываются другим фактором, еще неизвестным?
Ответ на эти вопросы может быть получен при анализе определенных ситуаций, в которых можно проследить морфологические изменения в мышцах. Наиболее наглядным и хорошо известным является тест с физической нагрузкой при прежнем объеме потребления калорий. В результате наблюдается определенное уменьшение процентной доли мышечных волокон ПБ типа при соответствующем увеличении мышечных волокон ПА типа. Увеличивается также число капилляров на поперечном сечении мышечного волокна [15, 19, 20]. После проведения 3-месячного теста с физическими нагрузками у больных инсулиннезависимым сахарным диабетом получены такие же результаты [19, 21, 23]. Наблюдалась также параллель между изменениями мышечной морфологии и уменьшением уровня инсулина, глюкозы, концентрации триглицеридов и понижением систолического и диастолического давления (рис. 5).
Общая схема развития метаболического синдрома представлена на рис. 6.
Заключение
Даже единичный эксперимент с физической нагрузкой, ведущий к заметному истощению запасов гликогена в мышцах, свидетельствует об увеличении инсулиновой чувствительности. Однако за такой короткий промежуток невозможно проследить изменения в мышечной морфологии или наблюдать пролиферацию капилляров. При однократном тесте с физической нагрузкой на первом этапе происходят дилатация и открытие ранее закрытых в поперечном сечении, нефункционировавших и неучаствовавших в кровообращении капилляров. Повышение концентрации инсулина и чувствительности к нему на уровне мышечной ткани, а также активности гликоген- синтетазы происходит вторично. После длительного подготовительного периода удлиняются уже существующие капилляры, принимая более спиральную, извитую форму. Только в результате проведения пролонгированного теста с физической нагрузкой наступает пролиферация капилляров. Следующая фаза состоит из энзиматических адаптационных изменений; в результате же последней фазы происходит специфическое процентное распределение типов мышечных волокон.
Морфологические изменения развиваются одновременно с улучшением способности к окислению жира и увеличением использования СЖК как основного субстрата, утилизирующегося во время мышечной работы. Подобные изменения отмечаются и при низкокалорийной диете. При этом первый адаптационный процесс — сужение расстояния диффузии для инсулина и других субстратов — происходит как результат уменьшения мышечной массы при прежнем количестве капилляров. В обоих случаях сужение расстояния диффузии при истощении гликогеновых депозитов в мышцах является важным фактором, способствующим повышению инсулиновой чувствительности.
В результате проведения 3-месячного теста с физической нагрузкой нам удалось проследить первые изменения в мышечной структуре при одновременном повышении активности энзимов, участвующих в р-окислении липидов и цикле Кребса (т. е. при одновременном повышении окислительной способности). За этот же период мы получили результаты об увеличении ЛПВП-холестерина и улучшении липидных показателей крови.

1. Vague J. // Presse Med. — 1947. — Vol. 30. — P. 339-340.

2. Krotkiewski M. Disturbances in Endocrine Function and lipids and Carbohydrates Metabolism in Obesity. — Warsawa, 1967. — P. 1-163.

3. Krotkiewski M., Bjorntorp P., Sjostrom L., Smith U. // J. clin. Invest. — 1983. — Vol. 72. — P. 1150-1162.

4. Larsson B. // Acta med. scand. — 1988. — Suppl. 723. — P. 45-51.

5. Lapidus L., Bengtsson C. // Ibid. — P. 53—59.

6. Lillioja S., Mott D. M., Zawadzki J. K. et al. // J. clin. Endocrinol. Metab. — 1986. — Vol. 62. — P. 922-927.

7. Bjorntorp P., Berchtold P. , Holm J., Larsson B. // Eur. J. clin. Invest. — 1971. — Vol. 1. — P. 470-485.

8. Evans D. J., Hoffman R. G., Kalkhoff R. K, Kissebah H. H. // J. clin. Endocrinol. Metab. — 1983. — Vol. 57. — P. 304— 311.

9. Innsler V., Lunefeld R. // Hum. Reprod. — 1991. — Vol. 6. — P. 1025-1029.

10. Tikkanen M. J., Nikkile E. A., Kunsi T., Sipinen S. // J. clin. Endocrinol. Metab. — 1982. — Vol. 54. — P. 1113—1120.

11. Despres J. P., Tremblay A., Perusse L. et al. // Int. J. Obesity. – 1988. — Vol. 12. — P. 1-13.

12. Marin P., Hogh-Kristiansen J., Jansson S. et al. // Amer. J. Physiol. — 1992. — Vol. 263. — P. E473-E480.

13. Yang Y. J., Hope J. D., Bergman R. N. // J. clin. Invest. — 1989. — Vol. 84. — P. 1620-1628.

14. Laakso M., Edelman S. V., Brechtel-Hook G., Baron A. D. // Diabetes. — 1992. — Vol. 41. — P. 1076-1083.

15. Krotkiewski M., Bylund-Falleniuw A.-Ch., Holm G. et al. // Eur. J. clin. Invest. — 1983. — Vol. 13. — P. 5-12.

16. Krotkiewski M. , Mandroukas K, Bjorntorp P. // Biochemistry of Exercise Scientific / Ed. G. Knuttgen. — Champaigh, 1983. — P. 854-855.

17. Krotkiewski M. // Scand. J. Rehab. — 1984. — Suppl. 5. — P. 680-681.

18. Mandroukas K, Krotkiewski M., Holm G. // Clin. Phys. — 1986. — Vol. 6. — P. 39-52.

19. Laakso M., Edelman S. V., Brechtek-Hook G., Baron A. D. // J. clin. Invest. — 1990. — Vol. 85. — P. 1844-1853.

20. Baron A. D., Brechtek-Hook G., Johnson A., Herdin D. // Hypertension. — 1993. — Vol.21. — P. 129-135.

21. Krotkiewski M., Bjorntorp P. // Int. J. Obesity. — 1986. — Vol. 10. — P. 331-341.

22. Holm G., Krotkiewski M. // Acta Med. Scand. — 1988. — Suppl. 723. — P. 95-101.

23. Krotkiewski M. // J. Obesity Weight Regul. — 1985. — Vol. 4. — P. 179-209.

24. Krotkiewski M., Seidel J. C., Bjorntorp P. // J. Intern. Med. — 1990. — Vol. 228. — P. 385-392.

25. Krotkiewski M. // Scand. J. Rehab. Med. — 1984. — Suppl. 5. — P. 55-70.

26. Krotkiewski M. , Bjorntorp P. // Metabolic Complications of Human Obesities / Ed. J. Vague. — Amsterdam, 1985. — P. 259-264.

27. Krotkiewski M. // Med. Sport. Sci. — Basel, 1992. — P. 405— 415.

28. Krotkiewski M., Lonnroth P., Mandorukas К et al. // Diabetologia. — 1985. — Vol. 28. — P. 881-890.

29. Krotkiewski M. // NIH Worshop on Physical Activity and Obesity. Skeletal Muscle in Obesity and Insulin Resistent Conditions / Ed. S. Hubbard. — Bethesda, 1992. — P. A47—A48.

30. Marin P., Krotkiewski M., Bjorntorp P. // Eur. J. Med. — 1992. — Vol. 1. — P. 329-336.

31. Plymate S. R., Matej L. A., Jones R. E., Friedl К E. // J. clin. Endocrinol. Metab. — 1988. — Vol. 67. — P. 460-463.

32. Julin-Dannfeldt A., Frisk-Holmberg M., Karlsson J., Tesch P. Ц Clin. Sci. — 1979. — Vol. 56. — P. 335-340.

33. Karlsson J. /I Eur. Heart J. — 1987. — Vol. 8, Suppl. 6. — P. 51-57.

34. Jacobsson E, Edstrom L., Grimby L., Thornell L. E. // J. Neurol. Sci. — 1991. — Vol. 105. — P. 49-56.

35. Rebuffe-Scive M., Krotkiewski M., Elfverson J., Bjorntorp P. // J. clin. Endocrinol. Metab. — 1988. — Vol. 67. — P. 1122— 1125.

Врожденная миопатия. Что такое Врожденная миопатия?

ВАЖНО
Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Врожденная миопатия — врожденное заболевание, обусловленное генетически детерминированными нарушениями в строении мышечной ткани. Врожденная миопатия проявляется диффузной мышечной слабостью и снижением мышечного тонуса, выраженность которых значительно варьирует в зависимости от вида миопатии. В тяжелых случаях врожденная миопатия может привести к гибели ребенка от дыхательной недостаточности. Диагностируется врожденная миопатия в основном по результатам морфологического исследования образцов, полученных при биопсии мышц; электромиография, эргометрия и исследование мышечного тонуса имеют лишь вспомогательное значение. Врожденная миопатия может потребовать мероприятий по борьбе с дыхательными нарушениями, обеспечению зондового питания, коррекции имеющихся ортопедических деформаций и пр.

    МКБ-10

    G71.2 Врожденные миопатии

    • Классификация врожденной миопатии
    • Симптомы врожденной миопатии
    • Характеристика отдельных видов врожденной миопатии
    • Диагностика врожденной миопатии
    • Лечение врожденной миопатии
    • Цены на лечение

    Общие сведения

    Термин «врожденная миопатия» применяется в неврологии в отношении целой группы достаточно редких наследственных болезней, которые имеют сходную клиническую картину и дифференцируются лишь по специфическим морфологическим изменениям в строении мышечной ткани. К наиболее часто встречаемым видам врожденной миопатии относятся: болезнь центрального стержня, немалиновая миопатия, миотубулярная миопатия, миопатия с множественными стержнями и врожденная диспропорциональность типов мышечных волокон.

    Врожденная миопатия является генетически обусловленным заболеванием. В зависимости от вида миопатии аномалия может локализоваться в различных локусах хромосом и передаваться по наследству доминантно, рецессивно или сцеплено с Х-хромосомой. Наличие аномального гена приводит к нарушению синтеза того или иного белка, входящего в структуру мышечной ткани. В результате изменяется строение мышечных волокон, что негативно отражается на их сократительной способности и приводит к генерализованной мышечной слабости. Обычно врожденная миопатия проявляется в раннем детском возрасте. Ее симптомы сохраняются в течение всей жизни пациента. В большинстве случаев врожденная миопатия характеризуется доброкачественным течением со слабым прогрессированием или вовсе без него.

    Врожденная миопатия

    Классификация врожденной миопатии

    В основу классификации врожденной миопатии были положены 2 признака: наличие информации о локализации генной аномалии и данных о том, какой именно белок мышечной ткани является дефектным. В соответствии с этим выделяется врожденная миопатия с известным мутантным геном и определенным дефектным белком (немалиновая миопатия, болезнь центрального стержня, миотубулярная миопатия), врожденная миопатия с неопределенным дефектным белком, но установленным мутантным геном (десмин-связанная и актинзависимая миопатии) и врожденная миопатия, для которой неизвестными остаются и ген, и дефектный белок (врожденная диспропорция типов волокон, центронуклеарная миопатия, миопатия с множественными стержнями).

    Симптомы врожденной миопатии

    Врожденная миопатия в первые месяцы жизни ребенка характеризуется наличием синдрома «вялого ребенка»: диффузным снижением мышечного тонуса, легкой мышечной слабостью, плохим развитием мускулатуры и ослабленным сосанием. По мере развития ребенка мышечная слабость становится более заметной. Она проявляется невозможностью подняться с пола, залезть на стул, затруднениями при ходьбе и других действиях, которые без проблем выполняют другие дети того же возраста. Мышечная слабость при врожденной миопатии может быть выражена в различной степени. Обычно не наблюдается ее существенное прогрессирование. В тяжелых случаях ребенок так и не может встать на ноги и вынужден всю жизнь передвигаться на каталке. Но те навыки, которые были им приобретены, уже не утрачиваются.

    Наибольшая опасность врожденной миопатии связана со слабостью дыхательной мускулатуры. При умеренной мышечной слабости отмечается постепенное развитие дыхательной недостаточности, частые бронхо-легочные заболевания (бронхит, очаговая пневмония, застойная пневмония и др.). Выраженная слабость дыхательных мышц может приводить к быстрому развитию дыхательной недостаточности и гибели ребенка в младенческом возрасте.

    В некоторых случаях врожденная миопатия сочетается с дисморфичными чертами (высокое небо, удлиненная и узкая форма лица) и скелетными аномалиями (кифоз, сколиоз, косолапость, грудь сапожника, врожденный вывих бедра).

    Характеристика отдельных видов врожденной миопатии

    Болезнь центрального стержня наследуется аутосомно-доминантно, известны также отдельные спорадические случаи заболевания. Врожденная миопатия этого вида проявляется задержкой двигательного развития в период первого года жизни, реже обнаруживается у взрослых пациентов, часто сопровождается слабостью мимической мускулатуры. Характерен небольшой рост больных и хрупкая фигура, наличие скелетных деформаций. У пациентов с этим видом врожденной миопатии отмечается повышенный риск возникновения злокачественной гипертермии. В биоптате мышечной ткани выявляют мышечные волокна с единичными или множественными зонами асептического некроза.

    Немалиновая врожденная миопатия включает актинопатию, небулинопатию, тропомиозинопатию и тропонинопатию. Ее наследование происходит чаще по аутосомно-доминантному принципу, но также встречается рецессивное наследование и спорадические случаи заболеваемости. Классическая форма немалиновой врожденной миопатии характеризуется синдромом вялого ребенка. Тяжелая форма проявляется еще во внутриутробном периоде в виде акинезии плода, а при рождении ребенка — тяжелыми двигательными нарушениями, слабостью мышц лица и дыхательной недостаточностью. Легкая форма этого типа врожденной миопатии диагностируется после периода раннего детства, иногда — в подростковом возрасте, и протекает без слабости лицевой мускулатуры. Существует также специфическая форма немалиновой врожденной миопатии, при которой возможно развитие офтальмоплегии, кардиомиопатии, синдрома ригидного позвоночника. Морфологическое исследование обнаруживает наличие в мышцах характерных палочко- или нитеподобных телец.

    Миотубулярная врожденная миопатия чаще наследуется как аутосомная, при которой мышечная слабость выражена в легкой степени и может наблюдаться как у девочек, так и у мальчиков. Х-сцепленная миотубулярная врожденная миопатия поражает только лиц мужского пола и характеризуется более тяжелым течением со слабостью лицевых мышц, расстройством глотания и дыхательной функции. В биоптате мышечной ткани преобладает поражение волокон I типа. Отмечается центральное расположение ядер миоцитов, что соответствует мышечной ткани эмбриона на 8-10 недели беременности. В связи с эти большинство исследователей рассматривают миотубулярную миопатию как результат недоразвития мышечной ткани.

    Миопатия с множественными стержнями чаще наблюдается как аутосомно-рецессивное заболевание, хотя возможен и доминантный тип наследования. Типична мышечная слабость в проксимальных отделах, которая наблюдается в грудном возрасте. Намного реже заболевание дебютирует в более старшем возрасте. В таких случаях отмечается генерализованная мышечная слабость. В мышечном биоптате определяются клетки с отсутствием митохондрий, деструкция сакромеров и гипотрофия мышечных волокон.

    Врожденная диспропорция типов мышечных волокон проявляется генерализованной слабостью мышц, в том числе и лицевых, мышечной гипотонией, аномалиями скелета. Тип наследования этой врожденной миопатии пока не установлен. В биоптате мышц наблюдается увеличение количества и малый размер волокон I типа на фоне гипертрофии или нормального размера волокон II типа.

    Диагностика врожденной миопатии

    В легких случаях только прицельный осмотр с исследованием мышечной силы и тонуса позволяет неврологу заподозрить наличие у ребенка врожденной миопатии. Тщательное исследование мышц с проведением силового тестирования (эргометрии), стандартной и стимуляционной электромиографии, миотонометрии или электротонометрии позволяет получить дополнительные данные, свидетельствующие в пользу диагноза «врожденная миопатия». Исключить генерализованную воспалительную миопатию (дерматомиозит, полимиозит) и диффузный миозит позволяет отсутствие болевого синдрома, уплотнений и воспалительной отечности мышц.

    Окончательно врожденная миопатия может быть диагностирована только после результатов морфологического исследования мышечной ткани, полученной путем биопсии мышц. Лишь это обследование позволяет определить специфичные для каждого вида миопатии изменения и установить точный диагноз. Однако даже биопсия не всегда позволяет достоверно верифицировать тип врожденной миопатии.

    Лечение врожденной миопатии

    К сожалению, на сегодняшний день не существует достаточно эффективных способов лечения и врожденная миопатия сохраняет свои проявления в течение всей жизни больного. Возможные методы терапии направлены на поддержание как можно более высокого уровня жизнеспособности пациента. Если врожденная миопатия сопровождается значительным снижением мышечной силы, в первые месяцы жизни медицинские мероприятия заключаются в борьбе с дыхательной недостаточностью, обеспечении питания через желудочный зонд, купировании бронхо-легочных осложнений. Благоприятное влияние на состояние больных в любом возрасте оказывает массаж, водолечение и физиотерапевтические процедуры. В более старшем возрасте может потребоваться ортопедическая коррекция имеющихся нарушений и социальная адаптация пациентов.

    Вы можете поделиться своей историей болезни, что Вам помогло при лечении врожденной миопатии.

    Источники

    1. Настоящая статья подготовлена по материалам сайта: https://www. krasotaimedicina.ru/

    ВАЖНО
    Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

    Muscles — Better Health Channel

    Действия для этой страницы

    Резюме

    Читать полный информационный бюллетень

    • В человеческом теле около 600 мышц.
    • К трем основным типам мышц относятся скелетные, гладкие и сердечные.
    • Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение — все вместе это известно как нервно-мышечная система.

    В теле человека около 600 мышц. Мышцы выполняют ряд функций: от перекачки крови и поддержки движения до подъема тяжестей или родов. Мышцы работают, сокращаясь или расслабляясь, чтобы вызвать движение. Это движение может быть произвольным (это означает, что движение совершается сознательно) или совершаться без нашего осознания (непроизвольное).

    Глюкоза из углеводов в нашем рационе питает наши мышцы. Для правильной работы мышечной ткани также необходимы определенные минералы, электролиты и другие пищевые вещества, такие как кальций, магний, калий и натрий.

    Целый ряд проблем может повлиять на мышцы – все вместе они известны как миопатия. Мышечные расстройства могут вызывать слабость, боль или даже паралич.

    Различные типы мышц

    К трем основным типам мышц относятся:

    • Скелетные мышцы – специализированная ткань, прикрепляющаяся к костям и позволяющая двигаться. Вместе скелетные мышцы и кости составляют костно-мышечную систему (также известную как опорно-двигательный аппарат). Вообще говоря, скелетные мышцы сгруппированы в противоположные пары, такие как бицепсы и трицепсы на передней и задней части плеча. Скелетные мышцы находятся под нашим сознательным контролем, поэтому их также называют произвольными мышцами. Другой термин — поперечнополосатые мышцы, так как ткань выглядит полосатой при рассмотрении под микроскопом.
    • Гладкая мускулатура – расположена в различных внутренних структурах, включая пищеварительный тракт, матку и кровеносные сосуды, такие как артерии. Гладкие мышцы расположены в виде слоистых пластинок, волнообразно сокращающихся по всей длине структуры. Другим распространенным термином является непроизвольная мышца, поскольку движение гладкой мускулатуры происходит без нашего осознания.
    • Сердечная мышца – мышца, специфичная для сердца. Сердце сжимается и расслабляется без нашего осознания.

    Состав мышц

    Скелетные, гладкие и сердечные мышцы выполняют очень разные функции, но имеют одинаковый основной состав. Мышца состоит из тысяч эластических волокон, плотно связанных друг с другом. Каждый пучок обернут тонкой прозрачной мембраной, называемой перимизием.

    Отдельное мышечное волокно состоит из блоков белков, называемых миофибриллами, которые содержат специальный белок (миоглобин) и молекулы, обеспечивающие кислород и энергию, необходимые для сокращения мышц. Каждая миофибрилла содержит филаменты, которые сгибаются вместе, когда получает сигнал к сокращению. Это укорачивает длину мышечного волокна, что, в свою очередь, укорачивает всю мышцу, если одновременно стимулируется достаточное количество волокон.

    Нервно-мышечная система

    Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение. Это все вместе известно как нервно-мышечная система. Типичная мышца обслуживается от 50 до 200 (или более) ветвей специализированных нервных клеток, называемых двигательными нейронами. Они подключаются непосредственно к скелетным мышцам. Кончик каждой ветви называется пресинаптической терминалью. Точка контакта между пресинаптической окончанием и мышцей называется нервно-мышечным соединением.

    Для перемещения определенной части тела:

    • Мозг посылает сообщение двигательным нейронам.
    • Это вызывает высвобождение химического вещества ацетилхолина из пресинаптических окончаний.
    • Мышца реагирует на ацетилхолин сокращением.

    Формы скелетных мышц

    Вообще говоря, скелетные мышцы бывают четырех основных форм, включая:

    • Веретено – широкое в середине и сужающееся на обоих концах, например, бицепс на передней части плеча .
    • Плоский – как простыня, типа диафрагмы, отделяющей грудную клетку от брюшной полости.
    • Треугольная – более широкая внизу, суженная вверху, как дельтовидные мышцы плеча.
    • Круговой – кольцеобразная форма, похожая на бублик, например, мышцы, окружающие рот, зрачки и анус. Они также известны как сфинктеры.

    Заболевания мышц

    Заболевания мышц могут вызывать слабость, боль, потерю подвижности и даже паралич. Ряд проблем, которые влияют на мышцы, в совокупности известны как миопатия. Общие проблемы с мышцами включают:

    • Травмы или чрезмерная нагрузка, включая растяжения связок, судороги, тендинит и кровоподтеки
    • Генетические проблемы, такие как мышечная дистрофия
    • Воспаления, такие как миозит
    • Заболевания нервов, поражающие мышцы, такие как рассеянный склероз
    • Состояния, которые вызывают мышечную слабость, например метаболические, эндокринные или токсические нарушения; например, заболевания щитовидной железы и надпочечников, алкоголизм, отравление пестицидами, лекарствами (стероиды, статины) и тяжелая миастения
    • Рак, такой как саркома мягких тканей.

    Где можно получить помощь

    • Ваш врач
    • Физиотерапевт
    • ЛФК ESSA Exercise & Sports Science Australia
    • Остеопат
    • МЕДСЕСТРА ПО ВЫЗОВУ Тел. 1300 60 60 24 – для получения экспертной медицинской информации и консультаций 24 часа, 7 дней

    Что нужно помнить

    • В человеческом теле около 600 мышц.
    • К трем основным типам мышц относятся скелетные, гладкие и сердечные.
    • Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение — все вместе это известно как нервно-мышечная система.

    • Ваши мышцы , Здоровье детей и молодежи, SA. Больше информации здесь.
    • Ваши мышцы , Kids Health, The Nemours Foundation, США. Больше информации здесь.
    • Как работают мышцы , How Stuff Works, Discovery Communications, США. Больше информации здесь.
    • Мышцы , Руководство Merck США. Больше информации здесь.
    • Заболевания мышц , MedlinePlus, США. Больше информации здесь.

    Эта страница была подготовлена ​​в консультации с и одобрена
    к:

    Эта страница была подготовлена ​​в консультации с и одобрена
    к:

    Оставить отзыв об этой странице

    Была ли эта страница полезной?

    Дополнительная информация

    Заявление об отказе от ответственности

    Содержание этого веб-сайта предоставляется только в информационных целях. Информация о терапии, услуге, продукте или лечении никоим образом не одобряет и не поддерживает такую ​​терапию, услугу, продукт или лечение и не предназначена для замены рекомендаций вашего врача или другого зарегистрированного медицинского работника. Информация и материалы, содержащиеся на этом веб-сайте, не предназначены для использования в качестве исчерпывающего руководства по всем аспектам терапии, продукта или лечения, описанным на веб-сайте. Всем пользователям настоятельно рекомендуется всегда обращаться за советом к зарегистрированному специалисту в области здравоохранения для диагностики и ответов на свои медицинские вопросы, а также для выяснения того, подходит ли конкретная терапия, услуга, продукт или лечение, описанные на веб-сайте, в их обстоятельствах. Штат Виктория и Министерство здравоохранения не несут никакой ответственности за использование любым пользователем материалов, содержащихся на этом веб-сайте.

    Отзыв сделан: 31-10-2012

    Muscles — Better Health Channel

    Действия для этой страницы

    Резюме

    Прочитать полный информационный бюллетень о мышцах человека

        .
      • К трем основным типам мышц относятся скелетные, гладкие и сердечные.
      • Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение — все вместе это известно как нервно-мышечная система.

      В теле человека около 600 мышц. Мышцы выполняют ряд функций: от перекачки крови и поддержки движения до подъема тяжестей или родов. Мышцы работают, сокращаясь или расслабляясь, чтобы вызвать движение. Это движение может быть произвольным (это означает, что движение совершается сознательно) или совершаться без нашего осознания (непроизвольное).

      Глюкоза из углеводов в нашем рационе питает наши мышцы. Для правильной работы мышечной ткани также необходимы определенные минералы, электролиты и другие пищевые вещества, такие как кальций, магний, калий и натрий.

      Целый ряд проблем может повлиять на мышцы – все вместе они известны как миопатия. Мышечные расстройства могут вызывать слабость, боль или даже паралич.

      Различные типы мышц

      К трем основным типам мышц относятся:

      • Скелетные мышцы – специализированная ткань, которая прикрепляется к костям и обеспечивает движение. Вместе скелетные мышцы и кости составляют костно-мышечную систему (также известную как опорно-двигательный аппарат). Вообще говоря, скелетные мышцы сгруппированы в противоположные пары, такие как бицепсы и трицепсы на передней и задней части плеча. Скелетные мышцы находятся под нашим сознательным контролем, поэтому их также называют произвольными мышцами. Другой термин — поперечнополосатые мышцы, так как ткань выглядит полосатой при рассмотрении под микроскопом.
      • Гладкая мускулатура – расположена в различных внутренних структурах, включая пищеварительный тракт, матку и кровеносные сосуды, такие как артерии. Гладкие мышцы расположены в виде слоистых пластинок, волнообразно сокращающихся по всей длине структуры. Другим распространенным термином является непроизвольная мышца, поскольку движение гладкой мускулатуры происходит без нашего осознания.
      • Сердечная мышца – мышца, специфичная для сердца. Сердце сжимается и расслабляется без нашего осознания.

      Состав мышц

      Скелетные, гладкие и сердечные мышцы выполняют очень разные функции, но имеют одинаковый основной состав. Мышца состоит из тысяч эластических волокон, плотно связанных друг с другом. Каждый пучок обернут тонкой прозрачной мембраной, называемой перимизием.

      Отдельное мышечное волокно состоит из блоков белков, называемых миофибриллами, которые содержат специальный белок (миоглобин) и молекулы, обеспечивающие кислород и энергию, необходимые для сокращения мышц. Каждая миофибрилла содержит филаменты, которые сгибаются вместе, когда получает сигнал к сокращению. Это укорачивает длину мышечного волокна, что, в свою очередь, укорачивает всю мышцу, если одновременно стимулируется достаточное количество волокон.

      Нервно-мышечная система

      Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение. Это все вместе известно как нервно-мышечная система. Типичная мышца обслуживается от 50 до 200 (или более) ветвей специализированных нервных клеток, называемых двигательными нейронами. Они подключаются непосредственно к скелетным мышцам. Кончик каждой ветви называется пресинаптической терминалью. Точка контакта между пресинаптической окончанием и мышцей называется нервно-мышечным соединением.

      Для перемещения определенной части тела:

      • Мозг посылает сообщение двигательным нейронам.
      • Это вызывает высвобождение химического вещества ацетилхолина из пресинаптических окончаний.
      • Мышца реагирует на ацетилхолин сокращением.

      Формы скелетных мышц

      Вообще говоря, скелетные мышцы бывают четырех основных форм, включая:

      • Веретено – широкое в середине и сужающееся на обоих концах, например, бицепс на передней части плеча .
      • Плоский – как простыня, типа диафрагмы, отделяющей грудную клетку от брюшной полости.
      • Треугольная – более широкая внизу, суженная вверху, как дельтовидные мышцы плеча.
      • Круговой – кольцеобразная форма, похожая на бублик, например, мышцы, окружающие рот, зрачки и анус. Они также известны как сфинктеры.

      Заболевания мышц

      Заболевания мышц могут вызывать слабость, боль, потерю подвижности и даже паралич. Ряд проблем, которые влияют на мышцы, в совокупности известны как миопатия. Общие проблемы с мышцами включают:

      • Травмы или чрезмерная нагрузка, включая растяжения связок, судороги, тендинит и кровоподтеки
      • Генетические проблемы, такие как мышечная дистрофия
      • Воспаления, такие как миозит
      • Заболевания нервов, поражающие мышцы, такие как рассеянный склероз
      • Состояния, которые вызывают мышечную слабость, например метаболические, эндокринные или токсические нарушения; например, заболевания щитовидной железы и надпочечников, алкоголизм, отравление пестицидами, лекарствами (стероиды, статины) и тяжелая миастения
      • Рак, такой как саркома мягких тканей.

      Где можно получить помощь

      • Ваш врач
      • Физиотерапевт
      • ЛФК ESSA Exercise & Sports Science Australia
      • Остеопат
      • МЕДСЕСТРА ПО ВЫЗОВУ Тел. 1300 60 60 24 – для получения экспертной медицинской информации и консультаций 24 часа, 7 дней

      Что нужно помнить

      • В человеческом теле около 600 мышц.
      • К трем основным типам мышц относятся скелетные, гладкие и сердечные.
      • Мозг, нервы и скелетные мышцы работают вместе, чтобы вызвать движение — все вместе это известно как нервно-мышечная система.

      • Ваши мышцы , Здоровье детей и молодежи, SA. Больше информации здесь.
      • Ваши мышцы , Kids Health, The Nemours Foundation, США. Больше информации здесь.
      • Как работают мышцы , How Stuff Works, Discovery Communications, США. Больше информации здесь.
      • Мышцы , Руководство Merck США. Больше информации здесь.
      • Заболевания мышц , MedlinePlus, США. Больше информации здесь.

      Эта страница была подготовлена ​​в консультации с и одобрена
      к:

      Эта страница была подготовлена ​​в консультации с и одобрена
      к:

      Оставить отзыв об этой странице

      Была ли эта страница полезной?

      Дополнительная информация

      Заявление об отказе от ответственности

      Содержание этого веб-сайта предоставляется только в информационных целях. Информация о терапии, услуге, продукте или лечении никоим образом не одобряет и не поддерживает такую ​​терапию, услугу, продукт или лечение и не предназначена для замены рекомендаций вашего врача или другого зарегистрированного медицинского работника. Информация и материалы, содержащиеся на этом веб-сайте, не предназначены для использования в качестве исчерпывающего руководства по всем аспектам терапии, продукта или лечения, описанным на веб-сайте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *