Разное

Из каких органических веществ состоят белки: из каких органических соединений состоят белки

Содержание

Органические вещества. Углеводы. Белки | Параграф 2. 5

 «Биология. Общая биология. Базовый уровень. 10-11 классы». В.И. Сивоглазов (гдз)

Вопрос 1. Какие химические соединения называют углеводами?
Углеводы — большая группа органических соединений, входящих в состав живых клеток. Термин «углеводы» введен впервые отечественным ученым К.Шмидтом в середине прошлого столетия (1844 г.). В нем отражены представления о группе веществ, молекула которых отвечает общей формуле: Сn(Н2О)n -углерод и вода.
Углеводы принято делить на 3 группы: моносахариды (например, глюкоза, фруктоза, манноза), олигосахариды (включают от 2 до 10 остатков моносахаридов: сахароза, лактоза), полисахариды (высокомолекулярные соединения, например, гликоген, крахмал).
Угленоды выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток: сложный полисахарид хитин — главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается
17,6 кДж энергии. Крахмал у растенийй и гликоген у животных, откладываясь в клетках, служит энергетическим резервом.
Именно углеводы древних живых существ (прокариотов и растений) стали основой для образования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? Приведите примеры.
Моносахариды — это углеводы, количество атомов углерода (n) в которых относительно невелико (от 3 до 6—10). Моносахариды обычно существуют в циклической форме; наиболее важны среди них гексозы
(n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото¬nрая является важнейшим продуктом фотосинтеза растений и одним из основных источников энергии для животных; широко распространена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Тетрозы содержат 4 (n = 4), а триозы, соответственно, 3(n =3) атомов углерода. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Составные части (мономеры) дисахарида могут быть одинаковыми либо разными. Так, две глюкозы образуют мальтозу, а глюкоза и фруктоза — сахарозу. Мальтоза является промежуточным продуктом переваривания крахмала; Сахароза — тем самым сахаром, который можно купить в магазине.
Все они хорошо растворимы в воде и растворимость их значительно увеличивается с повышением температуры.

Вопрос 3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?
Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С6Н12О6) и обладает несколькими —ОН — группами. За счет установления связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гликоген) полимеры. Средний размер такого полимера — несколько тысяч молекул глюкозы.

Вопрос 4.Из каких органических соединений состоят белки?
Белки — высокомолекулярные полимерные органические вещества, определяющие структуру и жизнедеятельность клетки и организма в целом. Структурной единицей, мономером их биополимерной молекулы является аминокислота. В образовании белков принимают участие 20 аминокислот. В состав молекулы каждого белка входят определенные аминокислоты в свойственном этому белку количественном соотношении и порядке расположения в полипептидной цепи. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кислотной группой (—СООН), аминогруппой
(—NН2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Аминокислоты — амфотерные соединения, соединяющиеся друг с другом в молекуле белка с помощью пептидных связей. Этим обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп (— NH — СО —) с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксильной группой другой ковалентная. В данном случае она называется пептидной связью.
Соединение двух аминокислот называется дипептидом, трех — трипептидом и т. д., а соединение, состоящее из 20 аминокислотных остатков и более, — полипептидом.
Белки, входящие в состав живых организмов, включают сотни и тысячи аминокислот. Порядок их соединения в молекулах белков самый разнообразный, чем и определяется различие их свойств.

Вопрос 5. Как образуются вторичная и третичная структуры белка?
Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру (например, инсулин). Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру (например, кератин). Многие белки, например коллаген, функционируют в форме закрученной спирали. Полипептидные цепи, скручиваясь определенным образом в компактную структуру, образуют глобулу (шар), представляющую собой третичную структуру белка. Замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате способности к участию в биохимических реакциях. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы.

Вопрос 6. Назовите известные вам функции белков.
Белки выполняют следующие функции:
• ферментативную (например, амилаза, расщепляет углеводы). Ферменты выполняют функцию катализаторов химических реакций и участвуют во всех биологических процессах.
• структурную (например, входят в состав мембран клетки). Структурные белки участвуют в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и соединительной ткани, а кератин является основным компонентом волос, ногтей, перьев.
• рецепторную (например, родопсин, способствует лучшему зрению).
• транспортную (например, гемоглобин, переносит кислород или диоксид углерода).
• защитную (например, иммуноглобулины, участвуют в образовании иммунитета).
• двигательную (например, актин, миозин, участвуют в сокращении мышечных волокон). Сократительная функция белков обеспечивает организму возможность двигаться посредством сокращения мышц.
• гормональную (например, инсулин, превращает глюкозу в гликоген). Белки-гормоны обеспечивают регуляторную функцию. Белковую природу имеет гормон роста (его избыток у ребенка приводит к гигантизму), гормоны, регулирующие работу почек, и др.
• энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии). Энергетическую функцию белки начинают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Чаще мы наблюдаем, как пищевой белок, перевариваясь, расщепляется до аминокислот, из которых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?
Денатурация — это утрата белковой молекулой своего нормального («природного») строения: третичной, вторичной и даже первичной структуры. При денатурации белковый клубок и спираль раскручиваются; водородные, а затем и пептидные связи разрушаются. Денатурированный белок не способен выполнять свои функции. Причинами денатурации являются высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов, органических растворителей. Примером денатурации служит варка куриного яйца. Содержимое сырого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбумина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.
При улучшении условий денатурированный белок способен восстановить свою структуру вновь, если не разрушается его первичная структура. Этот процесс называется ренатурацией.

Из каких органических соединений состоят белки. Органические вещества. Углеводы. Белки

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

8. Органические вещества. Углеводы. Белки

Вспомните!

Какие вещества называют биологическими полимерами?

Каково значение углеводов в природе?

Назовите известные вам белки. Какие функции они выполняют?

Углеводы (сахара).
Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90 % сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды
рибоза
и дезоксирибоза
входят в состав нуклеиновых кислот (рис. 15). Глюкоза
присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Широко распространена в природе фруктоза
– фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом

. Самый распространённый в природе дисахарид – сахароза
, или тростниковый сахар, – состоит из глюкозы и фруктозы (рис. 16). Её получают из сахарного тростника или сахарной свёклы. Именно она и есть тот самый сахар, который мы покупаем в магазине.

Сложные углеводы – полисахариды

, состоящие из простых сахаров, выполняют в организме несколько важных функций (рис. 17). Крахмал
для растений и гликоген
для животных и грибов являются резервом питательных веществ и энергии.

Рис. 15. Структурные формулы моносахаридов

Рис. 16. Структурная формула сахарозы (дисахарида)

Рис. 17. Строение полисахаридов

Крахмал запасается в растительных клетках в виде так называемых крахмальных зёрен. Больше всего его откладывается в клубнях картофеля и в семенах бобовых и злаков. Гликоген у позвоночных содержится главным образом в клетках печени и мышцах. Крахмал, гликоген и целлюлоза построены из молекул глюкозы.

Целлюлоза
и хитин
выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Белки (полипептиды).
Одними из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. И у каждого белка своя особая, только ему свойственная функция. О первостепенной роли этих сложных веществ догадывались ещё в начале XX в., именно поэтому им дали название протеины
(от греч. protos
– первый). В различных клетках на долю белков приходится от 50 до 80 % сухой массы.

Строение белков

. Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R) (рис. 18). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи (рис. 19).

Рис. 18. Общая структурная формула аминокислот, входящих в состав белков

Рис. 19. Образование пептидной связи между двумя аминокислотами

Две полипептидные цепи, из которых состоит гормон поджелудочной железы – инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин – белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

Последовательное расположение аминокислотных остатков, соединённых пептидными связями, является первичной структурой
белка и представляет собой линейную молекулу (рис. 20). Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации – вторичную структуру
. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура
белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной.

Может существовать четвертичная структура –
объединение нескольких белковых глобул в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырёх полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков

. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 21, 22). Около 10 тыс. белков-ферментов
служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

Рис. 20. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Вторая по величине группа белков выполняет структурную
и двигательную
функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные
белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

Белки-гормоны
обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит соответственно к развитию карликовости или гигантизма.

Рис. 21. Основные группы белков

Чрезвычайно важна защитная
функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свёртываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая
функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Рис. 22. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Рис. 23. Денатурация белка

Денатурация и ренатурация белков.
Денатурация –
это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жёстких условиях – и первичной структуры (рис. 23). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжёлых металлов и органических растворителей.

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму. Этот процесс называют ренатурацией
, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Вопросы для повторения и задания

1.
Какие химические соединения называют углеводами?

2.
Что такое моно– и дисахариды? Приведите примеры.

3.
Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4.
Из каких органических соединений состоят белки?

5.
Как образуются вторичная и третичная структуры белка?

6.
Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

7.
Что такое денатурация белка? Что может явиться причиной денатурации?

Подумайте! Выполните!

1.
Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

2.
К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

3.
Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

4.
Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

К настоящему времени выделено и изучено более тысячи ферментов, каждый из которых способен влиять на скорость той или иной биохимической реакции.

Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент. В качестве коферментов выступают различные вещества, как правило, витамины и неорганические – ионы различных металлов.

Как правило, ферменты строго специфичны, т. е. ускоряют только определённые реакции, хотя встречаются ферменты, которые катализируют несколько реакций. Такая избирательность действия ферментов связана с их строением. Активность фермента определяется не всей его молекулой, а определённым участком, который называют активным центром фермента. Форма и химическое строение активного центра таковы, что с ним могут связываться только определённые молекулы, которые подходят ферменту, как ключ замку. Вещество, с которым связывается фермент, называют субстратом. Иногда одна молекула фермента имеет несколько активных центров, что, естественно, ещё более ускоряет скорость катализируемого биохимического процесса.

На заключительном этапе химической реакции комплекс «фермент – субстрат» распадается на конечные продукты и свободный фермент. Освободившийся при этом активный центр фермента может снова принимать новые молекулы вещества-субстрата (рис. 24).

Рис. 24. Схема образования комплекса «фермент – субстрат»

Повторите и вспомните!

Человек

Обмен углеводов.
В организм углеводы попадают в виде различных соединений: крахмал, гликоген, сахароза, фруктоза, глюкоза. Сложные углеводы начинают перевариваться уже в ротовой полости. В двенадцатиперстной кишке они расщепляются окончательно – до глюкозы и других простых углеводов. В тонком кишечнике простые углеводы всасываются в кровь и направляются в печень. Здесь избыток углеводов задерживается и превращается в гликоген, а оставшаяся часть глюкозы распределяется между всеми клетками тела. В организме глюкоза, прежде всего, является источником энергии. Расщепление 1 г глюкозы сопровождается выделением 17,6 кДж (4,2 ккал) энергии. Продукты распада углеводов (углекислый газ и вода) выводятся через лёгкие или с мочой. Главная роль в регуляции концентрации глюкозы в крови принадлежит гормонам поджелудочной железы и надпочечников.

Больше всего углеводов содержится в продуктах растительного происхождения. Обычно в пище человека встречаются такие углеводы, как крахмал, свекловичный сахар (сахароза) и фруктовый сахар. Особенно богаты крахмалом различные крупы, хлеб, картофель. Очень полезен фруктовый сахар, он легко усваивается организмом. Этого сахара много в мёде, фруктах и ягодах. Взрослому человеку необходимо получать с пищей не менее 150 г углеводов в сутки. При выполнении физически тяжёлых работ это количество необходимо увеличить в 1,5–2 раза. С точки зрения процессов обмена веществ введение в организм полисахаридов более рационально, чем моно– и дисахаридов. Действительно, относительно медленный распад крахмала в пищеварительной системе приводит к постепенному поступлению глюкозы в кровь. В случае же переедания сладкого концентрация глюкозы в крови растёт резко, скачкообразно, что негативно влияет на работу многих органов (в том числе поджелудочной железы).

Обмен белков.
Попадая в организм, пищевые белки под действием ферментов расщепляются в желудочно-кишечном тракте до отдельных аминокислот и в таком виде всасываются в кровь. Главная функция этих аминокислот – пластическая, т. е. из них строятся все белки нашего организма. Реже белки используются как источники энергии: при распаде 1 г выделяется 17,6 кДж (4,2 ккал). Аминокислоты, входящие в состав белков нашего организма, подразделяют на заменимые и незаменимые. Заменимые
аминокислоты могут синтезироваться в нашем организме из других аминокислот, поступающих с пищей. К ним относятся глицин, серин и другие. Однако многие необходимые нам аминокислоты не синтезируются в нашем организме и поэтому должны постоянно поступать в организм в составе белков пищи. Такие аминокислоты называют незаменимыми
. Среди них, например, валин, метионин, лейцин, лизин и некоторые другие. В случае дефицита незаменимых аминокислот возникает состояние «белкового голодания», приводящее к замедлению роста организма, ухудшению процессов самовозобновления клеток и тканей. Пищевые белки, содержащие все необходимые человеку аминокислоты, называют полноценными
. К ним относят животные и некоторые растительные белки (бобовых растений). Пищевые белки, в составе которых отсутствуют какие-либо незаменимые аминокислоты, называют неполноценными
(например, белки кукурузы, ячменя, пшеницы).

Большинство продуктов питания содержит белок. Богаты белком мясо, рыба, сыр, творог, яйца, горох, орехи. Особенно важны животные белки молодому растущему организму. Недостаток полноценных белков в пище приводит к замедлению роста. В сутки человеку необходимо съедать с пищей 100–120 г белка.

Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак, который в печени превращается в мочевину. Конечные продукты обмена белков выводятся из организма с мочой, по?том и в составе выдыхаемого воздуха.

Из книги
Кризис аграрной цивилизации и генетически модифицированные организмы
автора

Глазко Валерий Иванович

ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы)
Основной закон рационального питания диктует необходимость соответствия уровней поступления и расхода энергии. Уменьшение энерготрат современного человека ведет к

Из книги
Гены и развитие организма
автора

Нейфах Александр Александрович

2. Белки хроматина
Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных — более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны

Из книги
О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь
автора

Дарвин Чарльз

О природе родства, связывающего органические существа.
Так как модифицированные потомки доминирующих видов, принадлежащих к обширным родам, склонны унаследовать преимущества, делавшие группы, к которым они принадлежат, обширными и их прародителей доминирующими, то тем

Из книги
Биология [Полный справочник для подготовки к ЕГЭ]
автора

Лернер Георгий Исаакович

автора

Белки
Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная

Из книги
Биологическая химия
автора

Лелевич Владимир Валерьянович

Углеводы
Основными углеводами пищи являются моносахариды, олигосахариды и полисахариды, которые должны поступать в количестве 400–500 г в сутки. Углеводы пищи являются основным энергетическим материалом клетки, обеспечивают 60–70% суточного энергопотребления. Для обмена

Из книги
Биологическая химия
автора

Лелевич Владимир Валерьянович

Глава 16. Углеводы тканей и пищи – обмен и функции
Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде

Из книги
Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина
автора

Что такое углеводы, зачем они нужны организму и в каких продуктах содержатся?
Углеводы (сахара) – обширная группа природных соединений, химическая структура которых часто отвечает общей формуле Cm(h3O)n (то есть углерод плюс вода, отсюда название). Углеводы являются

Из книги
Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле.

Биология и медицина]
автора

Кондрашов Анатолий Павлович

автора

2.1. Органические соединения в составе живых организмов
Органические соединения характерны только для живых организмов. Можно сказать, что жизнь на Земле построена на основе углерода, который обладает рядом уникальных свойств. Основное значение для выполнения роли

Из книги
Антропология и концепции биологии
автора

Курчанов Николай Анатольевич

Углеводы
Углеводы – это наиболее распространенная в природе группа органических веществ. Основная их функция – энергетическая. Все углеводы содержат гидроксильные группы (-ОН) вместе с альдегидной или кетогруппой. Выделяют три группы углеводов (табл. 2.1).Наибольшее

Из книги
Антропология и концепции биологии
автора

Курчанов Николай Анатольевич

Белки
Белки имеют первостепенное значение в жизни организмов. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся в их организме белков. Например, в организме человека их известно более 5 млн.Белки – это полимеры,

Вопрос 1. Какие химические соединения назы-вают углеводами?

Углеводы — это обширная группа природ-ных органических соединений. Углеводы под-разделяют на три основных класса: моносаха-риды, дисахариды и полисахариды. Дисахарид представляет собой соединение двух моносаха-ридов; полисахариды являются полимерами моносахаридов. Углеводы выполняют в живых организмах энергетическую, запасающую и строительную функции. Последняя особенно важна для растений, клеточная стенка которых в основном состоит из полисахарида целлюло-зы. Именно углеводы древних живых существ (прокариотов и растений) стали основой для об-разования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? При-ведите примеры.

Моносахариды — это углеводы, количест-во атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обыч-но существуют в циклической форме; наибо-лее важны среди них гексозы (n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото-рая является важнейшим продуктом фотосин-теза растений и одним из основных источни-ков энергии для животных; широко распрост-ранена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пен-тозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Если в одной молекуле объединяются два моносахарида, такое соеди-нение называют дисахаридом. Составные части (мономеры) дисахарида могут быть оди-наковыми либо разными. Так, две глюкозы об-разуют мальтозу, а глюкоза и фруктоза — са-харозу. Мальтоза является промежуточным продуктом переваривания крахмала; сахаро-за — тем самым сахаром, который можно ку-пить в магазине.

Вопрос 3. Какой простой углевод служит моно-мером крахмала, гликогена, целлюлозы?

Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С 6 Н 12 0 6) и обладает не-сколькими ОН-группами. За счет установле-ния связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гли-коген) полимеры. Средний размер такого по-лимера — несколько тысяч молекул глюкозы.

Вопрос 4. Из каких органических соединений состоят белки?

Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидны-ми связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кис-лотной группой (-СООН), аминогруппой (-NH 2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пеп-тидной связи происходит за счет соединения кислотной группы и аминогруппы двух ами-нокислот, расположенных рядом в молекуле белка.

Вопрос 5. Как образуются вторичная и третич-ная структуры белка?

Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряжен-ными аминогруппами и отрицательно заря-женными кислотными группами аминокис-лот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.

Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодей-ствий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы назы-вают третичной; именно она является биоло-гически активной формой белка, обладающей индивидуальной специфичностью и опреде-ленной функцией.

Вопрос 6. Назовите известные вам функции белков.

Белки выполняют в живых организмах чрезвычайно разнообразные функции.

Одна из самых многочисленных групп бел-ков — ферменты. Они выполняют функцию катализаторов химических реакций и уча-ствуют во всех биологических процессах.

Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и со-единительной ткани, а кератин является ос-новным компонентом волос, ногтей, перьев.

Сократительная функция белков обес-печивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.

Транспортные белки связывают и пере-носят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспорти-рует молекулы кислорода и углекислого газа.

Белки-гормоны обеспечивают регулятор-ную функцию. Белковую природу имеет гор-мон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирую-щие работу почек, и др.

Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание кро-ви, останавливая кровопотерю. Материал с сайта

Энергетическую функцию белки начи-нают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Ча-ще мы наблюдаем, как пищевой белок, перева-риваясь, расщепляется до аминокислот, из ко-торых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация — это утрата белковой мо-лекулой своего нормального («природного») строения: третичной, вторичной и даже пер-вичной структуры. При денатурации белко-вый клубок и спираль раскручиваются; водо-родные, а затем и пептидные связи разруша-ются. Денатурированный белок не способен выполнять свои функции. Причинами денату-рации являются высокая температура, ультра-фиолетовое излучение, действие сильных кис-лот и щелочей, тяжелых металлов, органиче-ских растворителей. Примером денатурации служит варка куриного яйца. Содержимое сы-рого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбу-мина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • что такое моно и дисахариды приведите примеры
  • углеводы кратко

Вопрос 1. Какие химические соединения назы­вают углеводами?

Углеводы — это обширная группа природ­ных органических соединений. Углеводы под­разделяют на три основных класса: моносаха­риды, дисахариды и полисахариды. Дисахарид представляет собой соединение двух моносаха­ридов; полисахариды являются полимерами моносахаридов. Углеводы выполняют в живых организмах энергетическую, запасающую и строительную функции. Последняя особенно важна для растений, клеточная стенка которых в основном состоит из полисахарида целлюло­зы. Именно углеводы древних живых существ (прокариотов и растений) стали основой для об­разования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? При­ведите примеры.

Моносахариды — это углеводы, количест­во атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обыч­но существуют в циклической форме; наибо­лее важны среди них гексозы (n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото­рая является важнейшим продуктом фотосин­теза растений и одним из основных источни­ков энергии для животных; широко распрост­ранена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пен­тозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Если в одной молекуле объединяются два моносахарида, такое соеди­нение называют дисахаридом. Составные части (мономеры) дисахарида могут быть оди­наковыми либо разными. Так, две глюкозы об­разуют мальтозу, а глюкоза и фруктоза — са­харозу. Мальтоза является промежуточным продуктом переваривания крахмала; сахаро­за — тем самым сахаром, который можно ку­пить в магазине.

Вопрос 3. Какой простой углевод служит моно­мером крахмала, гликогена, целлюлозы?

Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С 6 Н 12 0 6) и обладает не­сколькими ОН-группами. За счет установле­ния связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гли­коген) полимеры. Средний размер такого по­лимера — несколько тысяч молекул глюкозы.

Вопрос 4. Из каких органических соединений состоят белки?

Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидны­ми связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кис­лотной группой (-СООН), аминогруппой (-NH 2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пеп­тидной связи происходит за счет соединения кислотной группы и аминогруппы двух ами­нокислот, расположенных рядом в молекуле белка.

Вопрос 5. Как образуются вторичная и третич­ная структуры белка?

Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряжен­ными аминогруппами и отрицательно заря­женными кислотными группами аминокис­лот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.

Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодей­ствий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы назы­вают третичной; именно она является биоло­гически активной формой белка, обладающей индивидуальной специфичностью и опреде­ленной функцией.

Вопрос 6. Назовите известные вам функции белков.

Белки выполняют в живых организмах чрезвычайно разнообразные функции.

Одна из самых многочисленных групп бел­ков — ферменты. Они выполняют функцию катализаторов химических реакций и уча­ствуют во всех биологических процессах.

Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и со­единительной ткани, а кератин является ос­новным компонентом волос, ногтей, перьев.

Сократительная функция белков обес­печивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.

Транспортные белки связывают и пере­носят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспорти­рует молекулы кислорода и углекислого газа.

Белки-гормоны обеспечивают регулятор­ную функцию. Белковую природу имеет гор­мон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирую­щие работу почек, и др.

Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание кро­ви, останавливая кровопотерю.

Энергетическую функцию белки начи­нают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Ча­ще мы наблюдаем, как пищевой белок, перева­риваясь, расщепляется до аминокислот, из ко­торых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация — это утрата белковой мо­лекулой своего нормального («природного») строения: третичной, вторичной и даже пер­вичной структуры. При денатурации белко­вый клубок и спираль раскручиваются; водо­родные, а затем и пептидные связи разруша­ются. Денатурированный белок не способен выполнять свои функции. Причинами денату­рации являются высокая температура, ультра­фиолетовое излучение, действие сильных кис­лот и щелочей, тяжелых металлов, органиче­ских растворителей. Примером денатурации служит варка куриного яйца. Содержимое сы­рого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбу­мина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.

На этой странице искали:
  • какие химические соединения называют углеводами
  • какой простой углевод служит мономером крахмала гликогена целлюлозы
  • из каких простых органических соединений состоят белки
  • из каких органических соединений состоят белки
  • что такое моно и дисахариды приведите примеры

Органические вещества, входящие в состав клетки.

Биология 9 класс Мамонтов




Вопрос 1. Назовите основные группы органических веществ, входящих в состав клетки.


Органические соединения составляют в среднем 20–30 % массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул – гормоны, пигменты, аминокислоты, простые сахара, нуклеотиды и т. д. Разные типы клеток содержат разные количества органических соединений.


Вопрос 2. Из каких простых органических соединений состоят белки?


Белки – это высокомолекулярные полимерные соединения, мономером которых служат аминокислоты.


Вопрос 3. Составьте схему «Функции белков в клетке».


Функции белков в клетке многообразны. Одна из важнейших — строительная функция: белки входят в состав всех клеточных мембран и органоидов клетки, а также внеклеточных структур. Для обеспечения жизнедеятельности клетки исключительно важное значение имеет каталитическая, или. ферментативная, роль белков. Биологические катализаторы, или ферменты, — это вещества белковой природы, ускоряющие химические реакции в десятки и сотни тысяч раз.


Ферментам свойственны некоторые черты, отличающие их от катализаторов неорганической природы. Во-первых, один фермент катализирует только одну реакцию или один тип реакций, т. е. биологический катализ специфичен. Во-вторых, активность ферментов ограничена довольно узкими температурными рамками (35— 45 °С), за пределами которых их активность снижается или исчезает. В-третьих, ферменты активны при физиологических значениях рН, т. е. в слабощелочной среде. Еще одно важное отличие ферментов от неорганических катализаторов: биологический катализ протекает при нормальном атмосферном давлении.


Все это определяет ту важную роль, которую ферменты играют в живом организме. Практически все химические реакции в клетке протекают с участием ферментов. Двигательная функция живых организмов обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у многоклеточных животных и пр. Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела.


При поступлении в организм чужеродных белков или микроорганизмов белые кровяные тельца лейкоциты— образуют особые белки — антитела. Они связывают и обезвреживают не свойственные организму вещества — это защитная функция белков. Белки служат также источником энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.


Вопрос 4. Какие химические соединения называют углеводами?


Углеводы, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(h3O)n (т. е. углерод вода, отсюда название).


Вопрос 5. Назовите основные функции углеводов. Какие клетки и почему наиболее богаты углеводами?


Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток; сложный полисахарид хитин — главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается 17,6 кДж энергии. Крахмал у растений и гликоген у животных, откладываясь в клетках, служит энергетическим резервом.


Вопрос 6. Вспомните из предыдущих курсов биологии, какую функцию выполняет глюкоза в организме человека. Какое количество глюкозы в крови является нормой? Чем опасно резкое снижение концентрации глюкозы в плазме крови?


Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.


Уровень глюкозы в крови составляет 3,3—5,5 ммоль/л и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2—1,7 ммоль/л (40— 30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.


Вопрос 7. Объясните, почему термины «жиры» и «липиды» не являются синонимами.


Липиды — разнородная группа углеводород-содержащих органических веществ. Сложные природные и синтетические соединения, объединяемых общим свойством — хорошей растворимостью в неполярных органических растворителях (таких, как эфир и хлороформ) и очень малой растворимостью в воде. Липидам отводится важная роль в формировании биологических мембран, других сторонах жизнедеятельности организмов.


Не следует путать понятия, считая липиды синонимом слова жир, жиры (триглицериды) — лишь один из важных подклассов липидов.


Вопрос 8. Какие функции выполняют липиды? В каких клетках и тканях их особенно много?


Основная функция жиров – служить энергетическим резервуаром. Калорийность липидов выше энергетической ценности углеводов. В ходе расщепления 1 г жиров до СO2 и Н2O освобождается 38,9 кДж энергии. Содержание жира в клетке колеблется в пределах 5–15 % от массы сухого вещества. В клетках жировой ткани количество жира возрастает до 90 %. В организме животных, впадающих в спячку, накапливается избыток жира, у позвоночных животных жир откладывается ещё и под кожей – в так называемой подкожной клетчатке, где он служит для теплоизоляции. Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для обитателей пустынь. Так, жир, которым заполнен горб верблюда, служит в первую очередь не источником энергии (как часто ошибочно полагают), а источником воды.


Очень важную роль для живых организмов играют фосфолипиды, являющиеся компонентами мембран, т. е. выполняющие строительную функцию.


Из липидов можно отметить также воск, который используется у растений и животных в качестве водоотталкивающего покрытия. Из воска пчёлы строят соты. Широко представлены в животном и растительном мире стероиды – это желчные кислоты и их соли, половые гормоны, витамин D, холестерол, гормоны коры надпочечников и т. д. Они выполняют ряд важных биохимических и физиологических функций.


Вопрос 9. Откуда в организме берётся метаболическая вода?


Метаболическая, или эндогенная, вода образуется в организме в результате большого количества биохимических превращений. Наибольшее ее количество образуется при окислении углеводов и жиров. Например, при расщеплении 100 г жира выделяется не только значительное количество энергии, но и 134 мл эндогенной воды. Такое свойство жиров позволяет многим животным (амфибиям, рептилиям и млекопитающим) в неблагоприятный сезон года впадать в спячку и не вести активный образ жизни. Это же качество жира делает возможным трансокеанские перелеты некоторых бабочек (махаон).


Вопрос 10. Что такое нуклеиновые кислоты? Какие типы нуклеиновых кислот вы знаете? Чем отличаются РНК и ДНК?


Нуклеиновые кислоты – это полимеры, построенные из огромного числа мономерных единиц, называемых нуклеотидами.


Различают два типа нуклеиновых кислот. Дезоксирибонуклеиновая кислота (ДНК) – двуцепочечный полимер с очень большой молекулярной массой. В одну молекулу могут входить 108 и более нуклеотидов. ДНК несёт в себе закодированную информацию о последовательности аминокислот в белках, синтезируемых клеткой, и обладает способностью к воспроизведению.


Рибонуклеиновая кислота (РНК), в отличие от ДНК, бывает в большинстве случаев одноцепочечной. Существует несколько видов РНК: информационные (иРНК), транспортные (тРНК) и рибосомальные (рРНК). Они различаются по структуре, величине молекул, расположению в клетке и выполняемым функциям.


Вопрос 11. Сравните химический состав живых организмов и тел неживой природы. Какие выводы можно сделать на основе этого сравнения?


Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи. Все это говори об общности и единстве живой и неживом природы.


Вопрос 12. Какие особенности строения атома углерода обусловливают его ключевую роль в формировании молекул органических веществ?


Большинство окружающих нас веществ — органические соединения. Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 млн. таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.


Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами. Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы. Большое разнообразие органических соединений связано также с существованием явления изомерии.

Органические вещества. Углеводы. Белки




Вспомните!


Какие вещества называют биологическими полимерами?


Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.


Каково значение углеводов в природе?


Широко распространена в природе фруктоза — фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар, — состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.


Назовите известные вам белки. Какие функции они выполняют?


Гемоглобин – белок крови, транспорт газов в крови


Миозин – белок мышц, сокращение мышц


Коллаген – белок сухожилий, кож, эластичность, растяжимость


Казеин – белок молока, питательное вещество


Вопросы для повторения и задания


1. Какие химические соединения называют углеводами?


Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.


2. Что такое моно- и дисахариды? Приведите примеры.


Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар.


3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?


Глюкоза


4. Из каких органических соединений состоят белки?


Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Две полипептидные цепи, из которых состоит гормон поджелудочной железы — инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин — белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.


5. Как образуются вторичная и третичная структуры белка?


Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.


6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?


Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».


Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.


7. Что такое денатурация белка? Что может явиться причиной денатурации?


Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.


Подумайте! Вспомните!


1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.


Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.


2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?


Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени. Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.


О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70—120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.


Понижение активности одного из ферментов углеводного обмена — мышечной фосфорилазы — ведет к мышечной дистрофии.


3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?


В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).


4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.


Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.


5. Оцените содержание белков, жиров и углеводов в продуктах питания (на основании данных, представленных на этикетках).

Сайт преподавателя биологии и химии Дмитрия Андреевича Соловкова

Обновлены задания 3, 6, 11, 27 и 28 по биологии — добавлены новые номера из ЕГЭ-2020.




Рубрика: Абитуриенту


Обновил задания 1, 2, 20 и 21 в первой части — добавил около 30 новых номеров.




Рубрика: Абитуриенту


За последний месяц обновлены все задания второй части экзамена (№№30-35) — добавлены задания образца 2020 года. Согласно проекту ЕГЭ-2021, изменений во второй части по химии не планируется.




Рубрика: Абитуриенту


Обновлено задание 33 — добавлено около 15 новых цепочек.




Рубрика: Без рубрики


|

В задания 34 добавлен новый раздел — задачи на атомистику и молярные соотношения. Также обновлены задачи по электролизу с учетом новых задач ЕГЭ-2020.




Рубрика: Абитуриенту


|

Обновлены задания 32 и 35 — добавлены задачи 2020 года




Рубрика: Абитуриенту


|

Обновлены задания 30 и 31 — добавлены номера образца 2020 года. Посмотреть их можно здесь.




Рубрика: Абитуриенту


Задания 19 и 20 первой части обновлены в соответствии со спецификатором ЕГЭ-2021 года. В задание 24 добавлено около 10 номеров.




Рубрика: Абитуриенту


Выложены последние 2 презентации по цитологии — репликация ДНК и биосинтез белка. Таким образом, полностью закончен целый раздел общей биологии. Всем рекомендую для подготовки к ЕГЭ.




Рубрика: Абитуриенту


|

Добавлены очередные презентации по цитологии: по диссимиляции и автотрофному питанию




Рубрика: Абитуриенту


Определена структура первого внеземного белка

Осколок метеорита Альенде

Matteo Chinellato / Wikimedia Commons

Ученые смогли доказать
белковую природу обнаруженных ранее в метеоритах органических полимеров и
определить структуру основной разновидности, получившей название гемолитин (hemolithin). Оказалось,
что это соединение является двумя цепочками аминокислот, состоящими в среднем
из 16 остатков глицина или его производных, которые по краям удерживаются общими
группами с содержанием железа и лития. Внеземное происхождение веществ
подтверждается нехарактерным для планеты соотношением изотопов, пишут ученые в
препринте на сервере arXiv.org. 

Белки — это класс
органических соединений, которые представляют собой полимеры из аминокислот. Большинство
живых форм на Земле состоит из белков, в состав которых входит 20 различных
аминокислот. Простейшей стабильной аминокислотой является глицин, он в больших
количествах содержится в органических тканях, а также уже был обнаружен в межзвездной
среде.

Первые внеземные пептиды,
то есть соединения из нескольких аминокислот, были найдены в таких метеоритах,
как Acfer 086 (упал в Алжире в 1990 году) и Альенде (упал в 1969 году в
Мексике). Однако низкое содержание органического соединения значительно
затрудняет его описание. Например, выделение необходимо проводить при низких
температурах, иначе вещество разрушится. Из-за этого не было установлено строение
этих пептидов.

Джулия Макгиох и Малкольм
Макгиох (Julie McGeoch, Malcolm McGeoch) из Гарвардского университета с
использованием новых технологий смогли получить достаточно качественные данные
для описания органического вещества из метеорита Acfer 086, которое они назвали
гемолитином. Оказалось, что это белок с массой в 2320 дальтон, основная часть
которого состоит из двух антипараллельных нитей примерно по 16 соединенных
остатков глицина или гидроксиглицина. Эти цепочки по краям связаны с общими
группами атомов, которые содержат железо, литий, кислород и водород. Авторы
отмечают, что такое строение нехарактерно для железосодержащих белков и не
встречается у известных соединений данного класса.

Общий вид полученной структуры белка. Белый — водород, оранжевый — литий, серый — углерод, синий — азот, красный — кислород, зеленый — железо.

M. McGeoch et al. / arXiv.org, 2020

Детальный вид группы атомов, присоединенных к концам нитей. Белый — водород, оранжевый — литий, серый — углерод, синий — азот, красный — кислород, зеленый — железо.

M. McGeoch et al. / arXiv.org, 2020

Основным методом
исследования образцов метеорита была МАЛДИ (матрично-активированная лазерная
десорбция/ионизация) масс-спектрометрия. Техника МАЛДИ заключается в получении
ионов крупных молекул посредством их облучения лазерными импульсами в
специальных условиях, снижающих вызванную интенсивным потоком света фрагментацию.
Полученные заряженные соединения направляются в масс-спектрометр, который
определяет отношение заряда к массе в этих ионах. Анализ совокупности
полученных данных (отношений заряда к массе и интенсивностей соответствующих
сигналов) позволяет сделать выводы о строении исходного вещества.

В данной работе впервые удалось
получить высокоточные спектры масс с отношением сигнала к шуму до 135. Это
позволило однозначно установить наличие железа и лития, в том числе изотопов
железо-54 и литий-6. Результаты по водороду показали существенное превышение
концентрации дейтерия относительно земных значений: тяжелый изотоп встречался примерно
в 25,7 раз чаще, чем в веществах на Земле, что соответствует отношению изотопов
D/H = (4.1 ± 0.5) × 10-3. Эта величина сравнима с концентрациями дейтерия в
кометах и межзвездной среде, что подтверждает внеземное происхождение вещества
и отсутствие загрязнения образцов в лаборатории.

Авторы отмечают также
возможную функциональность такого белка. Известно, что группы FeO3Fe, соединенные
с концами пептидных цепочек в изученном веществе, могут катализировать распад
молекул воды при поглощении фотонов. Теоретически, благодаря этому свойству
данный белок может играть роль первичного производителя химической энергии. Тем
не менее, соответствующих измерений для гемолитина пока нет, так что на данный
момент рассуждения о его связи с внеземной жизнью или гипотетическим участием в
абиогенезе могут быть только спекулятивными.

Ранее ученые предложили искать внеземные цивилизации по космическому мусору и нашли эссе Черчилля о внеземной жизни. О попытках контактов с внеземными цивилизациями читайте в нашем блоге «Как же они говорят?».

Тимур Кешелава

8. Органические вещества. Углеводы. Белки. Биология. Общая биология. 10 класс. Базовый уровень

8. Органические вещества. Углеводы. Белки

Вспомните!

Какие вещества называют биологическими полимерами?

Каково значение углеводов в природе?

Назовите известные вам белки. Какие функции они выполняют?

Углеводы (сахара). Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90 % сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот (рис. 15). Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Широко распространена в природе фруктоза – фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид – сахароза, или тростниковый сахар, – состоит из глюкозы и фруктозы (рис. 16). Её получают из сахарного тростника или сахарной свёклы. Именно она и есть тот самый сахар, который мы покупаем в магазине.


Сложные углеводы – полисахариды, состоящие из простых сахаров, выполняют в организме несколько важных функций (рис. 17). Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии.

Рис. 15. Структурные формулы моносахаридов

Рис. 16. Структурная формула сахарозы (дисахарида)

Рис. 17. Строение полисахаридов

Крахмал запасается в растительных клетках в виде так называемых крахмальных зёрен. Больше всего его откладывается в клубнях картофеля и в семенах бобовых и злаков. Гликоген у позвоночных содержится главным образом в клетках печени и мышцах. Крахмал, гликоген и целлюлоза построены из молекул глюкозы.

Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Белки (полипептиды). Одними из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. И у каждого белка своя особая, только ему свойственная функция. О первостепенной роли этих сложных веществ догадывались ещё в начале XX в., именно поэтому им дали название протеины (от греч. protos – первый). В различных клетках на долю белков приходится от 50 до 80 % сухой массы.

Строение белков. Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R) (рис. 18). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи (рис. 19).

Рис. 18. Общая структурная формула аминокислот, входящих в состав белков

Рис. 19. Образование пептидной связи между двумя аминокислотами

Две полипептидные цепи, из которых состоит гормон поджелудочной железы – инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин – белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

Последовательное расположение аминокислотных остатков, соединённых пептидными связями, является первичной структурой белка и представляет собой линейную молекулу (рис. 20). Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации – вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной.

Может существовать четвертичная структура – объединение нескольких белковых глобул в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырёх полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 21, 22). Около 10 тыс. белков-ферментов служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

Рис. 20. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

Белки-гормоны обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит соответственно к развитию карликовости или гигантизма.

Рис. 21. Основные группы белков

Чрезвычайно важна защитная функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свёртываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Рис. 22. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Рис. 23. Денатурация белка

Денатурация и ренатурация белков. Денатурация – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жёстких условиях – и первичной структуры (рис. 23). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжёлых металлов и органических растворителей.

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму. Этот процесс называют ренатурацией, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.


Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

2. Что такое моно– и дисахариды? Приведите примеры.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

5. Как образуются вторичная и третичная структуры белка?

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Подумайте! Выполните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

5. Оцените содержание белков, жиров и углеводов в продуктах питания (на основании данных, представленных на этикетках).

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

К настоящему времени выделено и изучено более тысячи ферментов, каждый из которых способен влиять на скорость той или иной биохимической реакции.

Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент. В качестве коферментов выступают различные вещества, как правило, витамины и неорганические – ионы различных металлов.

Как правило, ферменты строго специфичны, т. е. ускоряют только определённые реакции, хотя встречаются ферменты, которые катализируют несколько реакций. Такая избирательность действия ферментов связана с их строением. Активность фермента определяется не всей его молекулой, а определённым участком, который называют активным центром фермента. Форма и химическое строение активного центра таковы, что с ним могут связываться только определённые молекулы, которые подходят ферменту, как ключ замку. Вещество, с которым связывается фермент, называют субстратом. Иногда одна молекула фермента имеет несколько активных центров, что, естественно, ещё более ускоряет скорость катализируемого биохимического процесса.

На заключительном этапе химической реакции комплекс «фермент – субстрат» распадается на конечные продукты и свободный фермент. Освободившийся при этом активный центр фермента может снова принимать новые молекулы вещества-субстрата (рис. 24).

Рис. 24. Схема образования комплекса «фермент – субстрат»

Повторите и вспомните!

Человек

Обмен углеводов. В организм углеводы попадают в виде различных соединений: крахмал, гликоген, сахароза, фруктоза, глюкоза. Сложные углеводы начинают перевариваться уже в ротовой полости. В двенадцатиперстной кишке они расщепляются окончательно – до глюкозы и других простых углеводов. В тонком кишечнике простые углеводы всасываются в кровь и направляются в печень. Здесь избыток углеводов задерживается и превращается в гликоген, а оставшаяся часть глюкозы распределяется между всеми клетками тела. В организме глюкоза, прежде всего, является источником энергии. Расщепление 1 г глюкозы сопровождается выделением 17,6 кДж (4,2 ккал) энергии. Продукты распада углеводов (углекислый газ и вода) выводятся через лёгкие или с мочой. Главная роль в регуляции концентрации глюкозы в крови принадлежит гормонам поджелудочной железы и надпочечников.

Больше всего углеводов содержится в продуктах растительного происхождения. Обычно в пище человека встречаются такие углеводы, как крахмал, свекловичный сахар (сахароза) и фруктовый сахар. Особенно богаты крахмалом различные крупы, хлеб, картофель. Очень полезен фруктовый сахар, он легко усваивается организмом. Этого сахара много в мёде, фруктах и ягодах. Взрослому человеку необходимо получать с пищей не менее 150 г углеводов в сутки. При выполнении физически тяжёлых работ это количество необходимо увеличить в 1,5–2 раза. С точки зрения процессов обмена веществ введение в организм полисахаридов более рационально, чем моно– и дисахаридов. Действительно, относительно медленный распад крахмала в пищеварительной системе приводит к постепенному поступлению глюкозы в кровь. В случае же переедания сладкого концентрация глюкозы в крови растёт резко, скачкообразно, что негативно влияет на работу многих органов (в том числе поджелудочной железы).

Обмен белков. Попадая в организм, пищевые белки под действием ферментов расщепляются в желудочно-кишечном тракте до отдельных аминокислот и в таком виде всасываются в кровь. Главная функция этих аминокислот – пластическая, т. е. из них строятся все белки нашего организма. Реже белки используются как источники энергии: при распаде 1 г выделяется 17,6 кДж (4,2 ккал). Аминокислоты, входящие в состав белков нашего организма, подразделяют на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в нашем организме из других аминокислот, поступающих с пищей. К ним относятся глицин, серин и другие. Однако многие необходимые нам аминокислоты не синтезируются в нашем организме и поэтому должны постоянно поступать в организм в составе белков пищи. Такие аминокислоты называют незаменимыми. Среди них, например, валин, метионин, лейцин, лизин и некоторые другие. В случае дефицита незаменимых аминокислот возникает состояние «белкового голодания», приводящее к замедлению роста организма, ухудшению процессов самовозобновления клеток и тканей. Пищевые белки, содержащие все необходимые человеку аминокислоты, называют полноценными. К ним относят животные и некоторые растительные белки (бобовых растений). Пищевые белки, в составе которых отсутствуют какие-либо незаменимые аминокислоты, называют неполноценными (например, белки кукурузы, ячменя, пшеницы).

Большинство продуктов питания содержит белок. Богаты белком мясо, рыба, сыр, творог, яйца, горох, орехи. Особенно важны животные белки молодому растущему организму. Недостаток полноценных белков в пище приводит к замедлению роста. В сутки человеку необходимо съедать с пищей 100–120 г белка.

Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак, который в печени превращается в мочевину. Конечные продукты обмена белков выводятся из организма с мочой, по?том и в составе выдыхаемого воздуха.







Данный текст является ознакомительным фрагментом.




Продолжение на ЛитРес








Органические соединения

Химические соединения живых существ известны как органических соединений из-за их связи с организмами и потому, что они являются углеродсодержащими соединениями. Органические соединения, которые представляют собой соединения, связанные с жизненными процессами, являются предметом органической химии. Среди многочисленных типов органических соединений во всем живом есть четыре основные категории: углеводы, липиды, белки и нуклеиновые кислоты.

Углеводы

Почти все организмы используют углеводов в качестве источников энергии.Кроме того, некоторые углеводы служат конструкционными материалами. Углеводы — это молекулы, состоящие из углерода, водорода и кислорода; отношение атомов водорода к атомам кислорода и углерода составляет 2: 1.

простых углеводов, обычно называемых сахарами, может быть моносахаридами, , если они состоят из одиночных молекул, или дисахаридами, , если они состоят из двух молекул. Наиболее важным моносахаридом является глюкоза, углевод с молекулярной формулой C 6 H 12 O 6 .Глюкоза — это основная форма топлива для живых существ. В многоклеточных организмах он растворим и транспортируется жидкостями организма ко всем клеткам, где метаболизируется, чтобы высвободить свою энергию. Глюкоза является исходным материалом для клеточного дыхания и основным продуктом фотосинтеза (см. Главы 5 и 6).

Три важных дисахарида также содержатся в живых организмах: мальтоза, сахароза и лактоза. Мальтоза представляет собой комбинацию двух ковалентно связанных единиц глюкозы. Сахароза столовая образуется путем связывания глюкозы с другим моносахаридом, называемым фруктозой. (Рисунок 2-2 показывает, что при синтезе сахарозы образуется молекула воды. Поэтому этот процесс называется реакцией дегидратации . Обратный процесс — это гидролиз , процесс, в котором молекула расщепляется и добавляется вода.) Лактоза состоит из единиц глюкозы и галактозы.

Рисунок 2-2 Молекулы глюкозы и фруктозы объединяются, образуя дисахарид сахарозу.

Сложные углеводы известны как полисахариды . Полисахариды образуются путем связывания бесчисленных моносахаридов. Среди наиболее важных полисахаридов — крахмал, который состоит из сотен или тысяч единиц глюкозы, связанных друг с другом. Крахмал служит формой хранения углеводов. Большая часть населения мира удовлетворяет свои потребности в энергии с помощью крахмала в виде риса, пшеницы, кукурузы и картофеля.

Два других важных полисахарида — это гликоген и целлюлоза. Гликоген также состоит из тысяч единиц глюкозы, но эти единицы связаны другим образом, чем в крахмале.Гликоген — это форма, в которой глюкоза хранится в печени человека. Целлюлоза используется в основном как структурный углевод. Он также состоит из единиц глюкозы, но единицы не могут высвобождаться одна из другой, за исключением нескольких видов организмов. Древесина состоит в основном из целлюлозы, как и стенки растительных клеток. Хлопчатобумажная ткань и бумага — это товарные целлюлозные продукты.

Липиды

Липиды — это органические молекулы, состоящие из атомов углерода, водорода и кислорода.Отношение атомов водорода к атомам кислорода в липидах намного выше, чем в углеводах. Липиды включают стероиды (материал, из которого состоят многие гормоны), воски и жиров.

Молекулы жира состоят из молекулы глицерина и одной, двух или трех молекул жирных кислот (см. Рис. 2-3). Молекула глицерина содержит три гидроксильные (–ОН) группы. Жирная кислота представляет собой длинную цепочку атомов углерода (от 4 до 24) с карбоксильной (–COOH) группой на одном конце.Все жирные кислоты в жире могут быть одинаковыми или разными. Они связаны с молекулой глицерина в процессе удаления воды.

Некоторые жирные кислоты имеют в своих молекулах одну или несколько двойных связей. Жиры, содержащие эти молекулы, представляют собой ненасыщенных жиров. Другие жирные кислоты не имеют двойных связей. Жиры, в состав которых входят эти жирные кислоты, представляют собой насыщенных жира. В большинстве случаев, связанных со здоровьем человека, потребление ненасыщенных жиров предпочтительнее насыщенных жиров.

Жиры, хранящиеся в клетках, обычно образуют прозрачные масляные капли, называемые глобулами , потому что жиры не растворяются в воде. Растения часто хранят жиры в своих семенах, а животные — в больших прозрачных шариках в клетках жировой ткани. Жиры в жировой ткани содержат много концентрированной энергии. Следовательно, они служат резервным источником энергии для организма. Фермент липаза расщепляет жиры на жирные кислоты и глицерин в пищеварительной системе человека.

Рисунок 2-3 Молекула жира создается путем объединения молекулы глицерина с тремя молекулами жирных кислот.(Две насыщенные жирные кислоты и одна ненасыщенная жирная кислота показаны для сравнения.) Сконструированная молекула находится внизу.

Белки

Белки, среди самых сложных из всех органических соединений, состоят из аминокислот (см. Рис. 2-4), которые содержат атомы углерода, водорода, кислорода и азота. Некоторые аминокислоты также содержат атомы серы, фосфора или других микроэлементов, таких как железо или медь.

Рисунок 2-4 Структура и химический состав аминокислот.Когда две аминокислоты соединяются в дипептид, –OH одной аминокислоты удаляется, а –H второй удаляется. Итак, вода удалена. Дипептидная связь (справа) образует соединение аминокислот вместе.

Многие белки огромны и чрезвычайно сложны. Однако все белки состоят из длинных цепочек относительно простых аминокислот. Есть 20 видов аминокислот. Каждая аминокислота (см. Левую иллюстрацию на рис. 2-4) имеет амино (–NH 2 ) группу, карбоксильную (–COOH) группу и группу атомов, называемую группой –R (где R означает ). радикал ).Аминокислоты различаются в зависимости от природы группы –R, как показано на средней иллюстрации рисунка 2-4. Примерами аминокислот являются аланин, валин, глутаминовая кислота, триптофан, тирозин и гистидин.

Удаление молекул воды связывает аминокислоты с образованием белка. Процесс называется дегидратационным синтезом , и побочным продуктом синтеза является вода. Связи между аминокислотами составляют пептидных связей, и небольшие белки часто называют пептидами.

Все живое зависит от белков. Белки — это основные молекулы, из которых построены живые существа. Некоторые белки растворены или взвешены в водянистом веществе клеток, а другие включены в различные структуры клеток. Белки также являются поддерживающими и укрепляющими материалами в тканях вне клеток. Кости, хрящи, сухожилия и связки состоят из белков.

Одна из важнейших функций белков — это фермент. Ферменты катализируют химические реакции, происходящие в клетках. Они не расходуются в реакции; скорее, они остаются доступными для катализа последующих реакций.

Каждый вид производит белки, уникальные для этого вида. Информация для синтеза уникальных белков находится в ядре клетки. Так называемый генетический код определяет аминокислотную последовательность в белках. Следовательно, генетический код регулирует химию, происходящую внутри клетки.Белки также могут служить резервным источником энергии для клетки. Когда аминогруппа удаляется из аминокислоты, полученное соединение богато энергией.

Нуклеиновые кислоты

Подобно белкам, нуклеиновых кислот представляют собой очень большие молекулы. Нуклеиновые кислоты состоят из более мелких единиц, называемых нуклеотидов. Каждый нуклеотид содержит молекулу углевода (сахар), фосфатную группу и азотсодержащую молекулу, которая в силу своих свойств представляет собой азотистое основание .

У живых организмов есть две важные нуклеиновые кислоты. Один тип — это дезоксирибонуклеиновая кислота, или ДНК. Другой — рибонуклеиновая кислота, или РНК. ДНК находится в основном в ядре клетки, в то время как РНК обнаруживается как в ядре, так и в цитоплазме , — полужидкое вещество, составляющее объем клетки (см. Главу 3).

ДНК и РНК

отличаются друг от друга по своим компонентам. ДНК содержит углевод дезоксирибозу, а РНК — рибозу.Кроме того, ДНК содержит тимин, а РНК — урацил. Структура ДНК и ее значение в жизни клетки рассматриваются в главе 10.

Органические соединения | Химия жизни

1.4 Органические соединения (ESG49)

Учащиеся будут изучать углеводы, липиды, белки и нуклеиновые кислоты под следующими заголовками:

  • Молекулярный состав : основные элементы, составляющие класс соединений.
  • Структурный состав : как мономеры соединяются вместе с образованием полимеров.
  • Биологическая роль : важность этих молекул для животных и растений.
  • Химический тест : как определить присутствие каждого класса соединений.

Есть также объяснение ферментов в разделе белков. Этот раздел главы содержит наиболее практическую работу, поэтому следует уделить много времени рассмотрению этого раздела.

Органическое соединение — это соединение, молекулы которого содержат C и обычно по крайней мере одну связь C-C или C-H.Очень маленькие углеродсодержащие молекулы, которые не подчиняются указанным выше правилам, такие как \ (\ text {CO} _ {2} \) и простые карбонаты, считаются неорганическими. Жизнь на Земле была бы невозможна без углерода. Помимо воды, большинство молекул живых клеток основаны на углероде и, следовательно, называются органическими соединениями. Основные классы органических соединений, которые мы рассмотрим в этом разделе, включают углеводы, липиды, белки и нуклеиновые кислоты.

Каждый из этих классов соединений состоит из больших молекул, построенных из малых субъединиц.Самая маленькая из этих субъединиц называется мономером . Несколько мономеров связываются вместе с образованием полимеров . Каждый из этих полимеров характеризуется определенной структурой за счет образующихся химических связей. Эти структуры связаны с функцией соединения в живых организмах. Поэтому мы будем изучать каждый класс соединений под следующими заголовками:

  • Молекулярный состав : основные элементы, составляющие класс соединений.
  • Структурный состав : как мономеры соединяются вместе с образованием полимеров.
  • Биологическая роль : важность этих молекул для животных и растений.
  • Химический тест : как определить присутствие каждого класса соединений.

Углеводы (ESG4B)

Молекулярный состав

Углеводы состоят из углерода (C), водорода (H) и кислорода (O).

Рис. 1.6: Молекула глюкозы состоит из углерода (серые сферы), водорода (белые сферы) и кислорода (красные сферы).

Конструкционный состав

Углеводы состоят из мономеров, известных как моносахаридов .Моносахарид, из которого состоит большинство углеводов, — это глюкоза. Другие моносахариды включают фруктозу, галактозу и дезоксирибозу (обсуждается позже). Эти мономеры могут быть соединены гликозидными связями . Когда два моносахарида химически связаны вместе, они образуют дисахаридов . Примером дисахарида является сахароза (столовый сахар), который состоит из глюкозы и фруктозы. Другие диссахариды включают лактозу, состоящую из глюкозы и галактозы, и мальтозу, состоящую из двух молекул глюкозы.Моносахариды и диссахариды часто называют сахарами или простыми углеводами. Несколько моносахаридов объединяются с образованием полисахаридов . Примеры полисахаридов, с которыми вы столкнетесь, включают гликоген, крахмал и целлюлозу. Полисахариды обычно называют сложными углеводами, так как они дольше расщепляются.

Рисунок 1.7: Примеры пищевых источников различных моносахаридов, дисахаридов и полисахаридов.

Роль у животных и растений

Основная функция углеводов — это молекулы хранения энергии и субстраты (исходный материал) для производства энергии.Углеводы расщепляются живыми организмами с выделением энергии. Каждый грамм углеводов обеспечивает около 17 килоджоулей (кДж) энергии. Крахмал и гликоген являются запасными полисахаридами (полимеры, состоящие из мономеров глюкозы) и, таким образом, действуют как хранилище энергии в живых организмах. Крахмал является запасным полисахаридом в растениях, а гликоген — запасным полисахаридом для животных. Целлюлоза содержится в стенках клеток растений и придает им силы. Все полисахариды состоят из мономеров глюкозы, но различие в свойствах этих веществ может быть связано с тем, как молекулы глюкозы соединяются вместе, образуя разные структуры.Ниже представлены изображения гликогена и крахмала.

Рис. 1.8: Сравнение крахмала и гликогена. Гликоген более разветвлен, чем крахмал.

Химические тесты для определения наличия крахмала

Вещества, содержащие крахмал, приобретают сине-черный цвет в присутствии раствора йода. Таким образом, наблюдаемое изменение цвета является основой химического теста на соединение.

Рис. 1.9: Гранулы пшеничного крахмала, окрашенные раствором йода и сфотографированные с помощью светового микроскопа.

В следующем исследовании мы проверим несколько различных продуктов на наличие крахмала.

Тест на наличие крахмала

(Essential research-CAPS)

Цель

Для проверки наличия крахмала.

Аппарат

  • кусок картофеля или хлеба
  • лист салата
  • чашка Петри
  • раствор йода
  • капельница
  • других блюд на ваш выбор

Метод

  1. Поместите кусок картофеля или хлеба, лист салата и другие образцы пищи в отдельные чашки Петри.
  2. С помощью пипетки добавьте несколько капель раствора йода в продукт в каждой чашке Петри.

Рис. 1.10: Схема эксперимента: испытание на наличие крахмала с использованием раствора йода.

Наблюдения

Запишите свои наблюдения.

Картофель или хлеб становятся сине-черными в присутствии раствора йода, а лист салата — нет.

вопросов

Можно ли с помощью этого метода определить , сколько присутствует крахмал ? Поясните свой ответ.

Да. Чем насыщеннее сине-черный цвет, тем выше содержание крахмала. Если присутствует только немного крахмала, полученный цвет выглядит более бледным и пурпурным, чем черный. Если крахмала нет совсем, видимы только цвета исходного материала (например, зеленого листа) и желто-коричневого цвета раствора йода.

Посмотрите видео демонстрацию теста на крахмал.

Видео: 2CMK

Посмотрите видео демонстрацию теста на крахмал.

Видео: 2 см

Посмотрите видео демонстрацию теста на крахмал.

Видео: 2CMN

Химический тест для определения присутствия редуцирующих сахаров

Некоторые моносахариды, такие как глюкоза, известны как редуцирующих сахаров . {\ circ} \) C)

  • Штатив для пробирок (при использовании водяной бани)
  • раствор глюкозы
  • раствор белка или яичный белок
  • раствор крахмала
  • вода
  • Раствор Бенедикта ИЛИ раствор Фелинга
  • маркер для маркировки пробирок
  • термометр
  • \ (\ text {10} \) \ (\ text {ml} \) шприц или мерный цилиндр
  • Меры предосторожности

    • При розжиге горелки Бунзена соблюдайте правила техники безопасности (перечисленные в главе 1).Не зажигайте его на полке или в замкнутом пространстве. Уберите с места все блокноты, бумаги и излишки химикатов. Соберите длинные волосы, свисающие украшения и свободную одежду и никогда не оставляйте открытое пламя без присмотра, пока оно горит.
    • При нагревании пробирок в горячей воде в мензурках убедитесь, что устья пробирок направлены в сторону от вас и других учеников.
    • При работе с пробирками, особенно когда они горячие, используйте держатель для пробирок и надевайте защитные очки.

    Метод

    Приготовьте водяную баню, наполнив стакан водой до половины. Поместите химический стакан на штатив над пламенем Бунзена, как показано на рисунке 1.11. Это послужит вашей водяной баней.

    ПРИМЕЧАНИЕ ДЛЯ УЧИТЕЛЯ: Для этого не обязательно использовать водяную баню. Пробирки можно нагревать напрямую. Однако необходимо иметь водяную баню, если у учителя нет газа и он вынужден пользоваться плиткой.

    Пока вода не достигнет желаемой температуры, выполните следующие инструкции:

    1. Пометьте пробирки 1–4.
    2. С помощью шприца или мерного цилиндра добавьте в пробирки следующее:
      • пробирка 1: \ (\ text {5} \) \ (\ text {ml} \) раствора крахмала \ (\ text {1} \% \)
      • пробирка 2: \ (\ text {5} \) \ (\ text {ml} \) из \ (\ text {10} \% \) раствора глюкозы
      • пробирка 3: \ (\ text {5} \) \ (\ text {ml} \) \ (\ text {1} \% \) раствор белка
      • пробирка 4: \ (\ text {5} \) \ (\ text {ml} \) вода.
    3. Добавьте \ (\ text {5} \) \ (\ text {ml} \) раствор Бенедикта в каждую пробирку.{\ circ} \) В.
    4. Примерно через \ (\ text {5} \) минут, когда в некоторых пробирках произошло изменение цвета, погасите пламя или выньте пробирки из водяной бани.
    5. Поместите четыре пробирки в штатив для пробирок и сравните цвета.

    Рисунок 1.11: Тест на снижение содержания сахара с использованием теста Бенедикта

    Результаты

    Создайте таблицу для записи результатов этого эксперимента. Важно наблюдать и записывать любые произошедшие изменения.

  • Три протестированных раствора являются примерами химических веществ, обнаруженных в клетках: глюкоза, крахмал, белок (белок). Какой из образцов дал положительный результат при добавлении раствора Бенедикта и нагревании пробирки?
  • Помимо цвета, какое изменение произошло в консистенции раствора Бенедикта?
  • Какие выводы можно сделать по результатам расследования?
  • Почему в пробирку 4 была вода?
  • Ответы

    1. Содержимое пробирки 2 становится желто-оранжевым, остальные остаются синими.
    2. Только глюкоза.
    3. Он стал немного гуще / свернулся.
    4. Любое другое тестируемое нами вещество, которое также становится желто-оранжевым при нагревании с раствором Бенедикта, содержит глюкозу или редуцирующий сахар.
    5. Это контроль, чтобы показать, что раствор Бенедикта реагирует с другим веществом в пробирке, а не с водой, в которой была растворена глюкоза.

    Посмотрите видео-демонстрацию теста на снижение содержания сахара.

    Видео: 2CMQ

    Посмотрите видео-демонстрацию теста на снижение содержания сахара.

    Видео: 2CMR

    Липиды (ESG4C)

    Молекулярный состав

    Липиды содержат углерод (C), водород (H) и кислород (O), но содержат меньше кислорода, чем углеводы. Примеры липидов в рационе включают кулинарные масла, такие как подсолнечное и оливковое масло, сливочное масло, маргарин и сало. Многие орехи и семена также содержат большое количество липидов.

    Конструкционный состав

    Триглицериды — один из наиболее распространенных типов липидов.Молекулы триглицеридов состоят из глицерина и трех жирных кислот (рис. 1.12). Хвосты жирных кислот состоят из множества соединенных вместе атомов углерода. Количество атомов углерода в цепях жирных кислот может быть разным.

    При рисовании органических молекул легко запутаться, выписывая все буквы C и H для углерода и водорода соответственно. Ученые преодолевают это, вытягивая углеродную основу и исключая водород. Углерод всегда будет образовывать 4 связи с другими атомами, поэтому легко вычислить, сколько должно быть атомов водорода.Углерод обозначен точкой, а связи между молекулами углерода обозначены линиями, соединяющими точки.

    Рис. 1.12: Молекула триглицерида.

    Роль у животных и растений

    Липиды являются важным запасом энергии и содержат 37,8 килоджоулей (кДж) энергии на грамм. Липиды триглицеридов расщепляются с высвобождением глицерина и жирных кислот. Глицерин можно преобразовать в глюкозу и использовать в качестве источника энергии, однако большая часть энергии, обеспечиваемой липидами, происходит за счет разрушения цепей жирных кислот.Некоторые жирные кислоты являются незаменимыми питательными веществами, которые не могут вырабатываться организмом и должны потребляться в небольших количествах. Заменимые жирные кислоты могут вырабатываться в организме из других соединений.

    Липиды важны для пищеварения и транспортировки основных витаминов, помогают защитить органы от шока и помогают поддерживать температуру тела. Липиды также играют важную роль в клеточных мембранах.

    Вы узнаете о важной роли, которую липиды играют в клеточных мембранах, из следующей главы, посвященной основным единицам жизни .

    Насыщенные и ненасыщенные жиры

    Углерод может образовывать четыре связи с другими атомами. Большинство атомов углерода в цепи жирной кислоты связано с двумя соседними атомами углерода и с двумя атомами водорода. Когда каждый атом углерода в цепи жирной кислоты образует четыре одинарные связи и имеет максимальное количество атомов водорода, цепь жирной кислоты называется насыщенной , потому что она «насыщена» атомами водорода. Однако иногда два соседних атома углерода образуются из двойной связи. В этом случае каждый атом углерода, участвующий в двойной связи, присоединен только к одному водороду.Жирные кислоты, которые имеют двойные связи углерод-углерод, известны как ненасыщенные , потому что двойная связь может быть «разорвана» и может образоваться дополнительная связь с водородом. Двойные связи сильнее одинарных, и они придают цепи жирной кислоты изгиб. Эти изгибы означают, что молекулы не могут плотно упаковываться вместе, и липиды более текучие. Вот почему ненасыщенные жиры имеют тенденцию быть жидкими при комнатной температуре, а насыщенные жиры — твердыми. Жирная кислота
    цепи с множеством двойных связей
    называются полиненасыщенными жирными кислотами.

    Рис. 1.13: Жирные кислоты могут быть насыщенными, мононенасыщенными или полиненасыщенными в зависимости от количества присутствующих двойных связей. Двойные связи приводят к «перегибам» в цепи жирных кислот.

    Холестерин

    Холестерин — это органическое химическое вещество, известное как стерол . От вас не требуется понимать его молекулярный состав или структурный состав. Это важный компонент клеточных мембран. Основные пищевые источники холестерина включают сыр, яйца, свинину, птицу, рыбу и креветки.Холестерин переносится через организм с помощью белков крови, известных как липопротеинов . Липопротеин — это любая комбинация липида и белка.

    Холестерин переносится с кровью через организм липопротеинами высокой плотности , липопротеинами низкой плотности и триглицеридами.

    1. Липопротеины низкой плотности (ЛПНП) : Липопротеины низкой плотности переносят холестерин по всему телу. В нем более высокая доля холестерина по сравнению с белком.Его часто называют «плохим» холестерином, потому что более высокий уровень ЛПНП связан с сердечными заболеваниями.
    2. Липопротеин высокой плотности (ЛПВП) : Липопротеин высокой плотности — самый маленький из липопротеинов. Он имеет высокую долю белка по сравнению с холестерином и поэтому часто известен как «хороший» холестерин. ЛПВП переносит холестерин от клеток в печень, где он расщепляется или выводится из организма в виде отходов.

    Вы узнаете больше о том, как холестерин может закупорить артерии и привести к сердечным заболеваниям, в главе о транспортных системах у животных

    Высокий уровень ЛПНП может вызвать сердечные заболевания.Холестерин накапливается в кровеносных сосудах, по которым кровь идет от сердца к тканям и органам тела, называемым артериями. Это приводит к затвердеванию и сужению этих сосудов, что препятствует транспортировке крови и потенциально может привести к сердечному приступу. Самый большой вклад в количество холестерина в крови — это тип жиров, которые вы едите. Насыщенные жиры менее полезны, чем ненасыщенные, поскольку они увеличивают количество холестерина ЛПНП в крови.

    Тест на липиды

    Тест на липиды основан на том факте, что липиды оставляют полупрозрачное «жирное пятно» на коричневых бумажных пакетах, в то время как нелипидные вещества этого не делают.

    Посмотрите видео, демонстрирующее тест на липиды.

    Видео: 2CMS

    Translucent означает, что объект пропускает свет.

    Тест на наличие липидов

    (Essential research-CAPS)

    Aim

    Для проверки на наличие липидов.

    Аппарат

    • кусок бумаги или бумажный пакет «рыба с жареным картофелем»
    • пищевые продукты, например картофель фри, кусок жареного мяса и т. Д.
    • 10 мл растительного масла (положительный контроль)
    • 10 мл воды (отрицательный контроль)

    Метод

    1. Положительный контроль : добавьте кулинарное масло в коричневый бумажный пакет, пока оно не впитается.Часть бумаги, впитывающая масло, должна быть полупрозрачной по сравнению с той, которая не пропускает масло.
    2. Отрицательный контроль : смочите бумагу водой. Бумага может намокнуть и намокнуть, но она не должна стать полупрозрачной.
    3. Экспериментальные образцы : испачкайте коричневый бумажный пакет исследуемым продуктом питания и поднесите его к свету. Если он полупрозрачный, как и в положительном контроле, пищевой продукт содержит липид.

    Наблюдения

    Запишите свои наблюдения, отмечая все ключевые различия между контролем и экспериментальным образцом.

    Бумага стала полупрозрачной, когда на нее поместили маслянистую пищу, так же, как полупрозрачное пятно на бумаге, содержащей растительное масло. Бумага, содержащая воду, была влажной, но легко высыхала и никогда не была полупрозрачной, поэтому мы можем сделать вывод, что еда содержала масла или липиды, а не воду.

    Альтернативные методы определения липидов

    Альтернативный метод проверки наличия липидов в образце — раздавить или растворить образец в этаноле. Жиры и липиды растворяются в спирте.После приготовления раствора этанола есть два способа проверить, содержит ли этот образец липиды:

    1. Отфильтруйте раствор этанола через фильтровальную бумагу: липидов, растворенных в этаноле, сделают фильтровальную бумагу полупрозрачной. Как только спирт испарится, останется полупрозрачное пятно.
    2. Добавьте образец этанола в воду: липидов не растворяются в воде. Следовательно, если раствор этанола содержит липиды, липиды выпадут в осадок из раствора при смешивании с водой, в результате чего раствор станет молочным.

    Белки (ESG4D)

    Молекулярный состав

    Белки содержат углерод (C), водород (H), кислород (O), азот (N) и могут содержать другие элементы, такие как железо (Fe), фосфор (P) и серу (S).

    Конструкционный состав

    Белки состоят из аминокислот . Существуют \ (\ text {20} \) распространенные аминокислоты, из которых состоят все белки в живых организмах. Девять из них считаются незаменимыми аминокислотами , поскольку они не могут синтезироваться в организме из других соединений и должны быть получены с пищей.Аминокислоты связаны вместе пептидными связями с образованием пептидов . Длинная пептидная цепь образует белок, который складывается в очень специфическую трехмерную форму. Эта трехмерная форма полностью определяется идентичностью и порядком аминокислот в пептидной цепи. Мы часто называем четырьмя различными уровнями структуры белка (рис. 1.14):

    Поскольку последовательность аминокислот определяет способ сворачивания белка, если вы начнете с определенной пептидной цепи, вы всегда получите одну и ту же трехмерную структуру!

    • Первичная структура : Это относится к последовательности аминокислот, соединенных пептидными связями с образованием полипептидной цепи.Некоторые белки содержат менее сотни аминокислот, а другие — несколько тысяч.
    • Вторичная структура : это первый уровень трехмерного складывания. Он полностью управляется водородными связями . Водородная связь обычно приводит к тому, что области намотки цепи и другие области образуют листы.
    • Третичная структура : Это второй уровень трехмерного фолдинга и общая окончательная форма белковой молекулы.Вторичные структуры и неструктурированные области цепи дополнительно складываются в глобулярную форму за счет гидрофобных взаимодействий (неполярные области, пытающиеся покинуть воду в клеточной среде) и электростатических взаимодействий (полярные и заряженные области, желающие взаимодействовать с водной средой. и друг друга).
    • Четвертичная структура : Некоторые белки являются сложными: две или более пептидных цепей складываются в свои третичные структуры, затем эти полные структуры связываются вместе посредством гидрофобных и электростатических взаимодействий с образованием конечного белка.

    Рисунок 1.14: Первичный, вторичный, третичный и четвертичный уровни структуры белка

    Роль у животных и растений

    Белки играют важную роль в нескольких важнейших биологических функциях. Белки содержатся в волосах, коже, костях, мышцах, сухожилиях, связках и других структурах и выполняют ключевые структурные и механические функции. Белки также важны для клеточной коммуникации и иммунной системы. Белки также могут выступать в качестве запаса энергии при расщеплении в процессе пищеварения.Каждый грамм белка может быть расщеплен, чтобы высвободить 17 кДж энергии. Определенные белки, называемые ферментами , играют важную роль в катализе клеточных реакций, которые являются частью метаболизма.

    Белки необходимы для любой диеты. Недостаток белка приводит к болезни, называемой квашиоркор (рис. 1.15) или маразм (рис. 1.16). Маразм вызывается общим дефицитом питания (голоданием), а квашиоркор — именно недостатком белка.

    Рисунок 1.15: Ребенок, страдающий от квашиоркора

    Рисунок 1.16: Ребенок, страдающий маразмом

    Мясо или овощи: какой источник белка лучше?

    И животный белок, и белок овощей полезны для здоровья. Но каждый тип содержит другие питательные вещества. Итак, какой «пакет» питательных веществ — мясо или овощи — лучше для здоровья?

    • 180-граммовый стейк содержит 40 г белка, НО также содержит 38 г жира, что больше, чем рекомендуемая диета
    • Из такого же количества лосося получается 34 г белка и 18 г жира.
    • В стакане вареной чечевицы содержится 18 г белка и 1 г жира.

    Тест на белки

    Тест Biuret Test для использования белков включает тестирование на наличие пептидной связи. Реагент биурета — это реагент на основе меди, который становится пурпурным при связывании с белком в щелочном растворе (рис. 1.17). Чем больше присутствует пептидных связей, тем больше интенсивность пурпурного цвета, что указывает на более высокую концентрацию белка.

    Наличие белка также можно определить с помощью реагента Миллона .Реагент Миллона реагирует с аминокислотами тирозина, обычными для большинства белков, и приводит к образованию красновато-коричневого осадка при нагревании.

    В таблице 1.5 ниже приведены основные тесты и их ожидаемые результаты в присутствии и в отсутствие белка.

    Посмотрите видеодемонстрацию теста биурета на белок.

    Видео: 2CMT

    Тестовый реагент Положительный результат Отрицательный результат
    Биуретовый реагент Фиолетовый / пурпурный цвет Красный цвет Фиолетовый / фиолетовый цвет коричневый цвет белый цвет

    Таблица 1.5: Наблюдаемые изменения цвета при тестировании на присутствие белка.

    Тест на наличие белков

    (Essential research-CAPS)

    ПРЕДУПРЕЖДЕНИЕ: реагент Миллона

    Реагент Миллона очень ядовит. Его использование в классе не приветствуется, если нет альтернативы или если учитель не уверен в его использовании. {\ circ} \) C)

  • Капельница или пластиковая пипетка
  • Пробирки:
    • два с раствором альбумина (положительный контроль)
    • два с сахарной водой (отрицательный контроль)
    • пробирок с образцами для исследования на наличие белка
    • пробирка с реактивом Миллона
    • пробирка с раствором для биуретовой пробы
  • ( ПРИМЕЧАНИЕ: Реагент Миллона и раствор Биурета в этом эксперименте должны быть приготовлены для вас вашим учителем).

    Метод

    Тест на белок с реактивом Миллона

    ВНИМАНИЕ! Реагент Миллона очень токсичен! Избегайте вдыхания его паров.

    1. С помощью пипетки или пипетки добавьте несколько капель реагента Миллона в пробирку, содержащую альбумин.
    2. С помощью пипетки или пипетки добавьте несколько капель реагента Миллона в пробирку, содержащую сахарную воду.
    3. Используя пипетку или пипетку, добавьте несколько капель реагента Миллона в пробирку, содержащую образцы вашей пищи, которую нужно проверить.
    4. Нагрейте смеси в кипящей воде в течение 5 минут.
    5. Обратите внимание на любые изменения цвета.

    Тест на белок с помощью теста Biuret

    1. С помощью капельницы или пипетки добавьте несколько капель раствора биурета в пробирку, содержащую альбумин.
    2. С помощью пипетки или пипетки добавьте несколько капель раствора Биурета в пробирку, содержащую сахарную воду.
    3. Используя пипетку или пипетку, добавьте несколько капель раствора Биурета в пробирку, содержащую образцы вашей пищи, которую нужно проверить.
    4. Обратите внимание на любые изменения цвета.

    Рисунок 1.17: Биуретовый тест: это ожидаемое изменение цвета, если присутствует белок

    Наблюдения

    Запишите свои наблюдения, отмечая все ключевые различия между положительным контролем, отрицательным контролем и экспериментальными образцами

    Наблюдения: Реагент Миллона

    Белок приобретает кирпично-красный цвет и становится твердым. Красноватый цвет указывает на положительный результат теста на белок. Вода с сахаром не становится красной — она ​​остается прозрачной, что свидетельствует об отсутствии белков.Любые образцы пищевых продуктов, которые становятся красновато-коричневыми при нагревании с реактивом Миллонса, также содержат белки.

    Наблюдения: биуретовый тест

    Белок становится фиолетовым, что указывает на присутствие белков. Вода с сахаром остается синего цвета добавленного сульфата меди — она ​​не становится фиолетовой, что указывает на отсутствие белков. Любые образцы пищевых продуктов, которые становятся фиолетовыми при добавлении химикатов Biuret, содержат белок.

    Посмотреть видео-демонстрацию эксперимента по тестированию белков:

    Видео: 2CMV

    Ферменты (ESG4F)

    Ферменты — это белковые молекулы, которые помогают протекать химическим реакциям в живых организмах.Термин фермент имеет особое значение:
    фермент — это биологический катализатор, который ускоряет скорость химической реакции, но не используется в самой химической реакции. Разберем это определение подробнее.

    Узнайте, что такое ферменты и как они работают.

    Видео: 2CMW

    Биологические : Ферменты — это белковые молекулы, состоящие из длинных цепочек аминокислот. Они складываются в уникальные трехмерные структуры с областью, известной как активный центр , где происходят реакции.

    Катализатор : Ферменты ускоряют химические реакции, не расходясь сами по себе. Все химические реакции требуют определенного минимального количества энергии. Эта энергия известна как свободная энергия активации . Ферменты снижают энергию активации, тем самым ускоряя химические реакции (рис. 1.18).

    Рис. 1.18: Ферменты снижают энергию активации, тем самым ускоряя протекание реакций.

    Ферменты не расходуются в реакциях, которые они катализируют : они не изменяют равновесия реакций, поэтому они катализируют как прямые, так и обратные реакции.Направление, в котором протекает реакция, определяется концентрацией субстратов и продуктов реакции.

    Ферменты могут участвовать в реакциях разрушения или наращивания молекул. Реакции разложения известны как катаболических реакций. Нарастающие реакции известны как анаболических реакций.

    Модель действия фермента «замок и ключ»

    Ферменты очень специфичны в отношении катализируемых ими реакций.Специфичность зависит от связей, образованных между активным центром фермента и его субстратом. Активные сайты имеют определенную форму, которая позволяет связывать очень специфический субстрат. Высокоспецифическая природа связывания фермента с субстратом сравнивается с «замком и ключом», где фермент выступает в качестве «замка», а субстрат — в качестве «ключа» (рис. 1.19). Субстрат связывает активный центр с образованием комплекса фермент-субстрат. Происходит реакция, затем продукт покидает активный центр, поскольку он больше не соответствует «замку» так же, как субстрат.Фермент остается неизменным.

    Рис. 1.19: Эта диаграмма иллюстрирует «ключ-замок» модель действия фермента.

    Исследование действия биологических стиральных порошков

    (Essential research-CAPS)

    Цель

    Для проверки действия ферментов в биологических стиральных порошках.

    Аппарат

    • два яйца всмятку (яйца, сваренные вкрутую, содержат денатурированные белки, не оставляющие пятен)
    • два стакана
    • биологический стиральный порошок (с ферментами)
    • Небиологический стиральный порошок (старый тип стирального порошка)
    • вода
    • две мерные ложки

    Метод

    1. Пометьте 3 стакана «Био», «Небио» и «Контроль», которые будут содержать биологический стиральный порошок, небиологический стиральный порошок и воду (отрицательный контроль) соответственно.
    2. В стакане с надписью «Био» растворите \ (\ text {5} \) \ (\ text {g} \) биологический стиральный порошок в \ (\ text {30} \) \ (\ text {ml} \) вода.
    3. В стакане с надписью «Non-Bio» растворите \ (\ text {5} \) \ (\ text {g} \) небиологический стиральный порошок в \ (\ text {30} \) \ (\ text { мл} \) воды.
    4. Налейте \ (\ text {30} \) \ (\ text {ml} \) водопроводной воды в контрольную мензурку.
    5. Выньте небольшое количество яичного желтка.
    6. Поместите по чайной ложке яичного желтка в каждый стакан.
    7. Оставьте ложки в мензурках на 1-2 часа.
    8. Наблюдайте за своими результатами.

    Результаты

    1. Запишите свои наблюдения.
    2. Укажите причину ваших наблюдений.
    3. Напишите заключение на расследование.

    Результаты

    Яичный желток в биологическом стиральном порошке медленно растворяется с ложки. Яичный желток в небиологическом стиральном порошке частично поднимается с ложки, но не распадается и не растворяется в воде.В контрольном стакане изменений нет — желток остается на ложке.

    Причины наблюдений

    Ферменты биологического стирального порошка разбивают яичный желток на более мелкие молекулы, которые отрываются от ложки и растворяются в воде. Этого не произошло ни с небиологическим порошком, ни с контролем.

    Заключение

    Биологические стиральные порошки лучше, чем небиологические стиральные порошки, удаляют органические пятна с одежды.

    Ферменты в повседневной жизни

    Свойства ферментов контролировать реакции широко используются в коммерческих целях. Примеры некоторых из этих применений перечислены ниже:

    • Биологические стиральные порошки содержат ферменты, такие как липазы (расщепляет липиды) и протеазы (расщепляет белок), которые помогают разлагать пятна, вызванные продуктами питания, кровью, жиром или жиром. Эти биологические стиральные порошки экономят энергию, поскольку они эффективны при низких температурах.
    • Размягчители для мяса содержат ферменты, полученные из таких фруктов, как папайя или ананас. Когда эти ферменты используются в мясных смягчителях, они смягчают мясо.
    • Молоко без лактозы производится в первую очередь для людей с непереносимостью лактозы. У людей с непереносимостью лактозы отсутствует фермент лактаза, который переваривает лактозу (молочный сахар). Лактоза предварительно переваривается путем добавления в молоко лактазы.

    Факторы, влияющие на действие фермента

    1.Температура

    У человека ферменты лучше всего работают в \ (\ text {37} \) \ (\ text {° C} \) (рис. 1.20). Это оптимальная температура. При очень высоких температурах белки денатурируют ; это означает, что водородное, гидрофобное и электростатическое взаимодействия, которые приводят к трехмерной форме белка, разрушаются, превращая белок в его первичную структуру, длинную цепочку аминокислот. Когда белок денатурируется, изменяется форма его активного центра, а также остальная часть формы белка.Субстрат больше не может соответствовать активному центру фермента, и химические реакции не могут происходить. Низкие температуры могут замедлить или даже деактивировать ферменты, поскольку низкая температура означает меньшую доступную кинетическую энергию, так что даже более низкая энергия активации, которую допускает фермент, недоступна. Первый график показывает влияние температуры на активность фермента.

    2. pH

    Активность фермента чувствительна к pH. Ферменты имеют оптимальный pH, как показано на графике, но они могут эффективно функционировать в пределах диапазона pH.Эффективность фермента резко падает, когда pH выходит за пределы оптимального диапазона. Фермент может денатурироваться при воздействии pH за пределами диапазона pH, поскольку pH влияет на заряд некоторых аминокислот и, следовательно, влияет на электростатические взаимодействия, удерживающие вместе третичную структуру. Второй график показывает влияние pH на активность фермента.

    Оптимальный pH и температура для фермента будут определяться видом живого существа, в котором он находится. Ферменты в организме человека имеют оптимальную температуру 37 ° C.Бактерии, которые живут в компостных кучах, имеют ферменты с оптимальным диапазоном значений в 40, а бактерии, называемые гипертермофилами (любители очень высоких температур), которые живут в горячих источниках, имеют ферменты с оптимальными температурами выше 80 ° C.

    Рис. 1.20: Графики, показывающие влияние температуры и pH на активность фермента соответственно.

    В следующем исследовании будет изучено влияние температуры на активность фермента каталазы. Перекись водорода потенциально токсична, поэтому живые ткани содержат фермент каталаза, который расщепляет его на нетоксичные соединения, а именно воду и кислород.Вы изучите влияние фермента каталазы на расщепление перекиси водорода. Далее вы изучите влияние pH и температуры на активность ферментов.

    Изучение влияния каталазы из куриной печени на перекись водорода

    (Essential research-CAPS)

    Цель

    Для демонстрации действия каталазы на перекись водорода.

    Аппарат

    • Мерные цилиндры 10 мл
    • пипетка
    • \ (\ text {3} \% \) Раствор перекиси водорода
    • скальпель
    • пинцет
    • баланс
    • печень куриная при комнатной температуре
    • Печень куриная отварная
    • печень куриная замороженная
    • стержень для перемешивания

    Метод

    Следуйте инструкциям ниже:

    • Отрежьте два квадратных куска весом 0.1 г образца свежей печени и поместите каждый в отдельный мерный цилиндр на 10 мл.
    • Используйте чистый мерный цилиндр для измерения 3 мл воды. Перелейте в один из цилиндров, содержащих свежую печень. Это ваш негативный контроль.
    • Используйте чистый мерный цилиндр для измерения 3 мл перекиси водорода. Перелейте в оставшийся цилиндр, содержащий свежую печень. Это ваш положительный контроль.
    • Подождите четыре минуты, а затем измерьте и запишите высоту образовавшихся пузырьков кислорода в каждом баллоне.

    Вопросы

    1. Назовите три переменных, которые должны оставаться стабильными на протяжении этих экспериментов, и объясните, почему они должны оставаться стабильными.
    2. Какая реакция происходит?
    3. Как бы вы могли сделать этот эксперимент более точным?
    4. Какие еще факторы влияют на скорость реакции, кроме температуры?

    Ответы

    1. Факторы остались прежними: [любые три из следующих]
      • Используйте одинаковое количество куриной печени в каждом мерном цилиндре, чтобы контролировать количество присутствующего фермента.
      • Используйте 3 мл воды и 3 мл перекиси водорода в двух разных цилиндрах, чтобы количество жидкости оставалось постоянным.
      • Дайте двум цилиндрам одинаковое время для прохождения реакции, чтобы можно было надежно сравнить барботажные колонны.
      • Содержимое обоих мерных цилиндров должно иметь одинаковую температуру, чтобы температура не мешала исследуемой реакции.
    2. Это катаболическая реакция / реакция разложения, поскольку перекись водорода распадается на кислород (пузырьки) и воду (оставшаяся жидкость).Реакция также является экзотермической, поскольку мерный цилиндр нагрелся — во время реакции выделялось тепло.
    3. Повышение точности:
      • Залейте жидкость в оба цилиндра одновременно.
      • Более точно отмерьте количество куриной печени.
      • Должна быть возможность рассчитать объем кислорода, выделяемого при пропускании его через воду, и более точно рассчитать объем кислорода, используя принцип вытеснения. В существующем методе часть кислорода улетучивалась в воздух, когда пузырьки лопались, поэтому измерение высоты является приближением объема выделившегося кислорода.
    4. Другие факторы, влияющие на скорость реакции:
      • Количество фермента в печени.
      • Количество доступного субстрата.
      • pH среды.
      • Состояние куриной печени — если она не свежая, некоторые ферменты могут быть неактивными.
      • Температура печени и жидкости.

    Каковы лучшие условия для фермента каталазы? Что происходит, когда фермент или живую ткань помещают в перекись водорода? Узнайте в этом видео.

    Видео: 2CMX

    Исследование влияния каталазы из куриной печени на перекись водорода — ЧАСТЬ B

    Цель

    Для демонстрации влияния температуры на активность каталазы.

    Метод

    • Добавьте 3 мл перекиси водорода в три отдельных градуированных мерных цилиндра на 10 мл. Пометьте один цилиндр «печень куриная замороженная»; второй — «вареная куриная печень» и третий — «куриная печень комнатной температуры».
    • Вырежьте по 0,1 г квадрата из замороженной и вареной куриной печени комнатной температуры.Положите кусочки печени в мерный цилиндр с соответствующей маркировкой с перекисью водорода.
    • Оставьте кусочки печени на четыре минуты и измерьте высоту образовавшихся пузырьков.

    Вопросы

    1. Объясните причины различий, наблюдаемых для трех измерительных цилиндров.
    2. Назовите зависимые и независимые переменные в этом эксперименте.
    3. Как бы вы могли сделать этот эксперимент более точным?
    4. Что бы вы сделали из своих наблюдений?

    Ответы

    1. Печень при комнатной температуре реагирует очень быстро и производит большое количество больших пенистых белых пузырьков, потому что ферменты очень активны — они близки к своей оптимальной температуре и легко расщепляют перекись водорода на воду и кислород.Замороженная печень сначала реагирует очень медленно и образует очень мало пузырьков, поскольку ферменты неактивны при таких низких температурах — им не хватает энергии активации. Когда реакция выделяет тепло, фермент немного позже ускоряется и образует более крупные пузырьки с большей скоростью, но никогда не так быстро, как при комнатной температуре. Вареная печень не проявляет никакой реакции — пузырьки не образуются, потому что ферменты денатурировались при кипячении. Их форма изменилась, и они вообще не могут катализировать реакцию.
      • Зависимой переменной является скорость реакции, то есть количество образовавшегося кислорода, которое было измерено как высота барботажной колонны.
      • Независимая переменная — температура — печень была комнатной температуры, заморожена или вареная.
      • Более точно измерьте количество печени и объем перекиси водорода и держите их одинаковыми.
      • Убедитесь, что все 3 мерных цилиндра идентичны — одинаковой ширины.
      • Залейте перекись водорода в баллоны одновременно.
      • Улавливайте количество выделившегося кислорода и используйте принцип вытеснения для более точного расчета объема газа.
    2. Температура влияет на активность ферментов. Ферменты наиболее активны при температуре, близкой к их оптимальным температурам, но они денатурируют и не могут функционировать, если температура слишком высока. При очень низких температурах ферменты не могут работать эффективно из-за недостатка энергии активации — они работают очень медленно.

    Нуклеиновые кислоты (ESG4G)

    Нуклеиновые кислоты, такие как ДНК и РНК, представляют собой большие органические молекулы, которые являются ключевыми для всех живых организмов. Строительные блоки нуклеиновых кислот называются нуклеотидами . Каждый нуклеотид состоит из сахара, фосфата и азотистого основания. Нуклеотиды соединены фосфодиэфирными связями , которые соединяют фосфат одного нуклеотида с сахаром другого. Нити фосфат-сахар-фосфат-сахар образуют «основу», на которой выставлены азотсодержащие основания.Следовательно, нуклеиновые кислоты представляют собой полимеров , состоящих из множества нуклеотидов. ДНК представляет собой двухцепочечный полимер из-за образования водородных связей между азотистыми основаниями двух комплементарных цепей. РНК — одноцепочечный полимер. Нуклеиновые кислоты не нужно получать с пищей, потому что они синтезируются с использованием промежуточных продуктов метаболизма углеводов и аминокислот.

    Нуклеиновые кислоты включают:

    • Дезоксирибонуклеиновая кислота ( ДНК ): содержит «инструкции» по синтезу белков в форме генов.ДНК находится в ядре каждой клетки, а также в меньших количествах присутствует в митохондриях и хлоропластах.
    • Рибонуклеиновая кислота ( РНК ): важна для передачи генетической информации от ДНК для образования белков. Он находится на рибосомах, в цитоплазме и ядре.

    ДНК

    также можно найти внутри хлоропластов и митохондрий.

    Рисунок 1.21: Схематическая диаграмма ДНК и РНК: ДНК двухцепочечная, а РНК одноцепочечная.

    Структура и функция ядра будут подробно объяснены в следующей главе: Основные единицы жизни .

    Типы органических соединений в химии и биологии

    Органические соединения называются «органическими», потому что они связаны с живыми организмами. Эти молекулы составляют основу жизни и очень подробно изучаются в химических дисциплинах органической химии и биохимии.

    Существует четыре основных типа или класса органических соединений, обнаруженных во всем живом: углеводы, липиды, белки и нуклеиновые кислоты.Кроме того, существуют другие органические соединения, которые могут быть обнаружены в некоторых организмах или вырабатываются ими. Все органические соединения содержат углерод, обычно связанный с водородом (также могут присутствовать другие элементы). Давайте подробнее рассмотрим ключевые типы органических соединений и рассмотрим примеры этих важных молекул.

    Углеводы — органические соединения

    Масанянка / Getty Images

    Углеводы — это органические соединения, состоящие из элементов углерода, водорода и кислорода.Отношение атомов водорода к атомам кислорода в молекулах углеводов составляет 2: 1. Организмы используют углеводы в качестве источников энергии, структурных единиц и для других целей. Углеводы — это самый большой класс органических соединений, содержащихся в организмах.

    Углеводы классифицируются по количеству содержащихся в них субъединиц. Простые углеводы называются сахарами. Сахар, состоящий из одной единицы, является моносахаридом. Если две единицы соединяются вместе, образуется дисахарид. Более сложные структуры образуются, когда эти более мелкие единицы соединяются друг с другом с образованием полимеров.Примеры этих более крупных углеводных соединений включают крахмал и хитин.

    Примеры углеводов:

    • Глюкоза
    • Фруктоза
    • Сахароза (сахар столовый)
    • Хитин
    • Целлюлоза
    • Глюкоза

    Липиды — органические соединения

    дулезидар / Getty Images

    Липиды состоят из атомов углерода, водорода и кислорода. Липиды имеют более высокое отношение водорода к кислороду, чем углеводы.Три основные группы липидов — это триглицериды (жиры, масла, воски), стероиды и фосфолипиды. Триглицериды состоят из трех жирных кислот, соединенных с молекулой глицерина. Каждый стероид имеет основу из четырех углеродных колец, соединенных друг с другом. Фосфолипиды напоминают триглицериды, за исключением того, что вместо одной из цепей жирных кислот есть фосфатная группа.

    Липиды используются для хранения энергии, построения структур и в качестве сигнальных молекул, помогающих клеткам общаться друг с другом.

    Примеры липидов:

    • Холестерин
    • Парафин
    • Оливковое масло
    • Маргарин
    • Кортизол
    • Эстроген
    • Фосфолипидный бислой, образующий клеточную мембрану

    Белки — органические соединения

    Максимилиан Сток Лтд. / Getty Images

    Белки состоят из цепочек аминокислот, называемых пептидами. Белок может быть получен из одной полипептидной цепи или может иметь более сложную структуру, в которой полипептидные субъединицы упаковываются вместе, образуя единицу.Белки состоят из атомов водорода, кислорода, углерода и азота. Некоторые белки содержат другие атомы, такие как сера, фосфор, железо, медь или магний.

    Белки выполняют в клетках множество функций. Они используются для создания структуры, катализатора биохимических реакций, иммунного ответа, упаковки и транспортировки материалов, а также для воспроизведения генетического материала.

    Примеров белков:

    • Ферменты
    • Коллаген
    • Кератин
    • Альбумин
    • Гемоглобин
    • Миоглобин
    • Фибрин

    Нуклеиновые кислоты — органические соединения

    Stocktrek Images / Getty Images

    Нуклеиновая кислота — это тип биологического полимера, состоящего из цепочек нуклеотидных мономеров.Нуклеотиды, в свою очередь, состоят из азотистого основания, молекулы сахара и фосфатной группы. Клетки используют нуклеиновые кислоты для кодирования генетической информации организма.

    Примеры нуклеиновых кислот:

    • ДНК (дезоксирибонуклеиновая кислота)
    • РНК (рибонуклеиновая кислота)

    Другие виды органических соединений

    Ирина Имаго / Getty Images

    В дополнение к четырем основным видам органических молекул, обнаруженных в организмах, существует множество других органических соединений.К ним относятся растворители, лекарства, витамины, красители, искусственные ароматизаторы, токсины и молекулы, используемые в качестве предшественников биохимических соединений. Вот некоторые примеры:

    • ацетальдегид
    • Ацетаминофен
    • Ацетон
    • Ацетилен
    • Бензальдегид
    • Биотин
    • Бромфеноловый синий
    • Кофеин
    • Тетрахлорметан
    • Фуллерен
    • Гептан
    • Метанол
    • Горчичный газ
    • Ванилин

    Четыре основные группы органических соединений, из которых состоят живые организмы

    Ученые обычно называют соединения, содержащие элемент углерод, органическими, хотя некоторые углеродсодержащие соединения не являются органическими.Углерод уникален среди других элементов, потому что он может связываться практически безграничными способами с такими элементами, как водород, кислород, азот, сера и другие атомы углерода. Каждому живому существу для выживания необходимы четыре типа органических соединений — углеводы, липиды, нуклеиновые кислоты и белки. Организмы сталкиваются с этими фундаментальными соединениями в своем рационе или могут вырабатывать их внутри своего тела.

    Углеводы

    Углеводы — это органические соединения, которые содержат атомы углерода, водорода и кислорода в соотношении 1-2-1.По словам доктора Мэри Джин Холланд с факультета естественных наук Колледжа Баруха, ученые признают три различных типа углеводов, которые различаются по количеству содержащихся в них молекул сахара. Моносахариды, такие как глюкоза, содержат одну молекулу сахара. Дисахариды, такие как сахароза и лактоза, содержат две молекулы сахара. Полисахариды, такие как крахмал и целлюлоза, являются звеньями многочисленных молекул сахара. Организмы используют углеводы в качестве энергии, в определенных клеточных структурах и как способ хранения энергии для дальнейшего использования.Профессор Уильям Ройш в своем «Виртуальном учебнике органической химии» указывает, что углеводы являются наиболее распространенными органическими соединениями в организмах, а глюкоза — наиболее известной формой углеводов.

    Липиды

    Липиды состоят из таких соединений, как жиры, масла и воски. Эти органические соединения накапливают энергию, образуют структурные компоненты внутри клеток и служат изоляцией в организмах. Доктор Альфред Меррилл и доктор Рэйчел Ширеман, пишущие в Journal of Nutrition, заявляют, что рацион человека должен включать только несколько основных типов липидов: линолевую кислоту и витамины A, D, E и K.В рекомендациях Министерства сельского хозяйства США по питанию для американцев от 2005 г. взрослым рекомендуется ограничивать количество жиров в своем рационе до 20-35 процентов от дневной нормы калорий.

    Нуклеиновые кислоты

    В живых существах существуют два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК, которую часто называют «планом жизни», определяет генетические коды организмов, которые, в свою очередь, определяют их характеристики. ДНК хранит информацию для создания особого типа РНК, называемого матричной РНК или мРНК.РНК напрямую отвечает за производство белков. ДНК состоит из единичных единиц, называемых нуклеотидами, принимающих форму двух отдельных цепей, скрученных вместе в скрученную лестничную форму, называемую двойной спиралью. РНК, также состоящая из нуклеотидов, образует единую цепь, очень близкую к ДНК. Вариабельность последовательностей нуклеотидов в нашей ДНК и РНК делает нас индивидуумами, определяя различные белки, производимые нашим телом, и, в конечном итоге, характеристики, которыми мы обладаем.

    Белки

    Белки, возможно, являются наиболее универсальными из всех типов органических соединений, обнаруженных в живых существах. Они делают возможными определенные реакции в организмах, переносят другие соединения по телу, помогают частям тела двигаться, обеспечивают структуру и в основном способствуют выполнению всех функций внутри тела. Как и другие органические соединения, белки состоят из более мелких строительных блоков, называемых аминокислотами. Согласно гипертексту по биотехнологии Университета штата Колорадо, большинство белков на Земле содержат комбинации всего лишь из 20 аминокислот.

    Органические молекулы, лабораторные заметки для BIO 1003

    Лабораторные заметки для BIO 1003

    © 30 августа 1999 г., Мэри Джин Холланд

    пересмотрена 19 августа 2005 г. (JJ, JHW)


    ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ — ФОНОВОЕ ЧТЕНИЕ

    Органические соединения содержат атомы углерода, связанные вместе, образуя цепи или кольца. Четыре класса органических соединений — углеводы, липиды, белки и нуклеиновые кислоты — обнаруживаются в больших количествах в живых организмах.Химические свойства различных классов зависят от наличия конкретных функциональных групп. Как правило, более крупные молекулы в каждом классе образуются путем соединения одной или нескольких молекул строительных блоков вместе в реакции синтеза дегидратации , во время которой для каждого добавленного строительного блока образуется молекула воды. Большие молекулы распадаются на более мелкие молекулы строительных блоков в результате обратной реакции, называемой гидролизом , во время которой добавляется вода.В этом упражнении вы узнаете о структуре и свойствах углеводов, липидов и белков, а также о том, как проверить наличие этих органических молекул.

    I. Липиды

    Липиды представляют собой органические молекулы, нерастворимые в воде и других полярных растворителях . Липиды легко растворяются в неполярных растворителях , таких как хлороформ, бензол и эфир. Липиды включают жиры и масла (важные как запасные соединения энергии), фосфолипиды и гликолипиды (часть структуры клеточных мембран), воски (защитные покрытия поверхности многих растений и животных) и стероиды (обнаруженные в некоторых клеточных мембранах и многих гормонах). .

    Жиры и масла имеют схожие структуры, и оба служат в качестве молекул хранения энергии. При комнатной температуре масла жидкие, а жиры твердые. Оба являются триглицеридами , образованными путем объединения молекулы глицерина с тремя молекулами жирной кислоты. Свойства триглицерида зависят от структуры содержащихся в нем жирных кислот. Жирные кислоты представляют собой длинные цепи, содержащие углерод и водород с карбоксильной группой (COOH) на одном конце, что делает молекулу кислотой.Карбоксильная группа участвует в связывании каждой жирной кислоты с молекулой глицерина. Жирные кислоты различаются длиной цепи и количеством двойных связей между соседними атомами углерода. Если все атомы углерода в цепи жирной кислоты связаны с четырьмя разными атомами (без двойных связей между атомами углерода), жирная кислота имеет прямую цепь без изгибов или перегибов. Двойные связи между атомами углерода заставляют цепи жирных кислот изгибаться или перекручиваться. Жирные кислоты насыщенных жиров (таких как сало, жир бекона или масло) не содержат двойных связей, максимум атомов водорода, а прямые цепи жирных кислот плотно упакованы друг в друга.Жирные кислоты ненасыщенных жиров содержат по крайней мере одну двойную связь, меньше атомов водорода, и цепи жирных кислот не могут упаковываться так близко друг к другу, потому что по крайней мере одна из цепей имеет перегиб или изгиб. Мононенасыщенные жиры , такие как оливковое масло, имеют одну двойную связь. Полиненасыщенные жиры , такие как кукурузное масло, имеют две или более двойных связи. Менее «упорядоченная» структура ненасыщенных жиров ответственна за их более низкую температуру плавления.

    Есть три простых теста для определения липидов.(1) Поскольку липиды (неполярные молекулы) и вода (полярные молекулы) не смешиваются, их комбинация разделится на два слоя. (2) краситель Судан красный растворяется в липидах; при добавлении к смеси липидов и воды он окрашивает только липидный слой. (3) липиды оставляют жирные пятна на бумаге; вода и растворы, растворяющиеся в воде, нет.

    II. Углеводы

    Углеводы являются основными молекулами-накопителями энергии в большинстве организмов.Они также являются важными структурными компонентами для многих организмов. Строительные блоки углеводов — это небольшие молекулы, называемые сахаров, , состоящие из углерода, водорода и кислорода. Углеводы классифицируются по количеству содержащихся в них молекул сахара. Моносахариды, , такие как глюкоза, фруктоза, рибоза и галактоза, содержат только одну молекулу сахара. Дисахариды, , такие как сахароза, мальтоза и лактоза, содержат две молекулы сахара, связанные вместе. Полисахариды, , такие как крахмал, гликоген, целлюлоза и хитин, содержат множество молекул сахара, связанных вместе.

    Моносахариды имеют молекулярную формулу (CH 2 O) n , где n может быть любым целым числом от 3 до 8. Моносахариды содержат гидроксильные группы и либо кетон, либо альдегидную группу. Эти полярные функциональные группы делают сахара очень растворимыми в воде. Глюкоза, сахар, содержащийся в крови большинства позвоночных, включая человека, имеет молекулярную формулу C 6 H 12 O 6 .Фруктоза, сахар, содержащийся во многих фруктах, имеет ту же молекулярную формулу, что и глюкоза, но атомы углерода, водорода и кислорода расположены в двух моносахаридах по-разному. Глюкоза имеет альдегидную группу; фруктоза имеет кетоновую группу. Эта разница в структуре придает двум моносахаридам несколько разные химические свойства.

    Дисахариды образуются путем связывания двух моносахаридов вместе посредством реакции синтеза дегидратации .При этом образуется молекула воды. Мальтоза (солодовый сахар) образуется путем соединения двух молекул глюкозы вместе. Сахароза (тростниковый сахар) образуется из глюкозы и фруктозы. Лактоза (молочный сахар) образуется путем объединения глюкозы и галактозы.

    Мальтоза, сахароза и лактоза имеют одинаковую молекулярную формулу, C 12 H 22 O 11 , но немного разные структурные формулы и несколько разные химические свойства.

    C 6 H 12 O 6 + C 6 H 12 O 6 C 12 H 22 O 11 + H 2 O
    глюкоза + глюкоза мальтоза + вода
    глюкоза глюкоза

    вода
    глюкоза + галактоза лактоза + вода

    Простой тест на восстановление сахаров — смешать их с равным количеством реагента Бенедикта (синего цвета) в пробирке и нагреть в кипящей воде.Если присутствует редуцирующий сахар, образуется оранжевый осадок. Положительный результат теста Бенедикта требует наличия альдегидной или кетонной группы, расположенной рядом с гидроксильной группой. Все моносахариды являются редуцирующими сахарами. Некоторые дисахариды восстанавливают сахар, а некоторые нет. Если реакционноспособные альдегидные или кетоновые группы обоих моносахаридов участвуют в связи, удерживающей две единицы вместе, эти группы не могут свободно реагировать с ионами меди в растворе Бенедикта, и образовавшийся дисахарид не является редуцирующим сахаром.Полисахариды не дают положительных результатов на восстанавливающие сахара, если они не подвергаются реакции гидролиза (путем нагревания или переваривания), во время которой полисахариды расщепляются с образованием моносахаридов.

    Полисахариды образуются путем связывания множества моносахаридов вместе посредством серии реакций синтеза дегидратации. Для каждого моносахарида, добавленного к полисахаридной цепи, образуется молекула воды. Полисахариды используются в качестве накопителей энергии как растениями, так и животными.Растения производят полисахарид под названием крахмал . Позвоночные животные, в том числе люди, производят полисахарид, называемый гликогеном , , который хранится в клетках печени и мышц. Гликоген иногда называют животным крахмалом. Полисахариды также важны как структурные компоненты многих организмов. Стенки растительных клеток содержат полисахарид под названием целлюлоза . Стенки клеток грибов и экзоскелеты членистоногих содержат хитин , полисахарид с азотом.

    Крахмал можно быстро идентифицировать, добавив йод Люголя. Цвет сразу меняется с йодно-коричневого на сине-черный. Реакция происходит только с крахмалом.

    III. Белки

    Белки представляют собой сложные специализированные молекулы, состоящие из углерода,
    водород, кислород и азот. Многие белки также содержат серу. В
    Строительными блоками белков являются аминокислот .Есть двадцать
    различные аминокислоты, обычно встречающиеся в белках. Все эти амино
    кислоты имеют аналогичную структуру. В центре молекулы находится
    альфа-углерод , который связан с четырьмя различными группами: (1)
    аминогруппа (NH 2 ), (2) карбоксильная группа (COOH),
    (3) атом водорода и (4) группа R (также называемая стороной
    цепь
    ).Различные аминокислоты имеют разные группы R; иначе
    двадцать аминокислот имеют идентичную структуру.

    Белки состоят из одного или нескольких полипептидов . Полипептиды
    образуются путем соединения аминокислот в длинную неразветвленную цепь.
    Аминокислоты связаны между собой пептидными связями , образованными при
    карбоксильная группа одной аминокислоты реагирует с аминогруппой
    следующая аминокислота в реакции синтеза дегидратации.Поскольку каждая аминокислота
    кислота добавляется к растущей полипептидной цепи, молекула воды
    сформирован. Полипептиды имеют свободную (непрореагировавшую) аминогруппу, расположенную
    на одном конце молекулы, называемом N-концом и свободным (непрореагировавшим)
    карбоксильная группа на другом конце молекулы называется C-конец .
    Биохимики описывают структуру конкретного полипептида, записывая
    вниз по последовательности аминокислот, начиная с N-конца и продолжая
    вдоль цепи до конца C.

    Белки играют важную роль в живых организмах. Структурные
    белки, такие как эластин и коллаген, обеспечивают поддержку. Нормативный
    белки контролируют клеточные процессы. Запасные белки, производимые репродуктивными
    структуры являются источником аминокислот для развивающихся организмов, например,
    казеин в молоке, альбумин в яичных белках, различные белки в семенах растений.
    Сократительные белки отвечают за движение клеток и организмов.Транспортные белки переносят вещества из одного места в другое, например,
    гемоглобин переносит кислород по всему человеческому телу. Белки также служат
    как антитела, гормоны, рецепторы и ферменты.

    Реагент биурета меняет цвет с синего на фиолетовый при смешивании с раствором, содержащим белок. Нингидрин, нанесенный на сухие пятна из растворов, содержащих аминокислоты, приобретает светло-фиолетовый оттенок.


    Вернуться к индексу.

    Wahlert & Holland (Rev.7 / 8 / 99jj)

    Последнее обновление 30 августа 1999 г. (JHW)

    Примеры органических соединений

    Органическое соединение имеет молекулы, которые содержат ковалентно связанные атомы углерода и водорода. Они могут содержать дополнительные элементы. Некоторые из них возникают в естественных условиях, а другие синтезируются в лабораторных условиях. Эти соединения могут быть газообразными, жидкими или твердыми. Есть четыре основных категории органических соединений.Откройте для себя примеры органических соединений и их молекулярные формулы.

    Углеводы

    Многие органические соединения представляют собой углеводы. Химическая формула углеводов: (CH 2 O) n. В этой формуле «n» представляет количество атомов углерода в молекуле. Есть три категории углеводов: моносахариды, дисахариды и полисахариды.

    Моносахариды

    Углеводы из категории моносахаридов представляют собой простые сахара.Многие, но не все, имеют молекулярную формулу (C 6 H 12 O 6 ).

    • фруктоза (C 6 H 12 O 6 )
    • глюкоза (C₆H₁₂O₆)
    • аллоза (C₆H₁₂O₆)
    • альтроза (C₆H₁₂O₆)
    • галактоза (C₆148 CHrab14O) 90₁₂O148 90₆148 (C 5 H 10 O 5 )
    • эритроза (C 4 H 8 O 4 )

    Дисахариды

    Дисахариды — это пары моносахаридов, то есть два простых сахара.Эти примеры образованы объединением двух моносахаридов с химической формулой (C 6 H 12 O 6 ), поэтому они имеют одинаковую молекулярную формулу (C₁₂H₂₂O₁₁).

    • лактоза (C₁₂H₂₂O₁₁) — включает глюкозу и галактозу
    • сахарозу (C₁₂H₂₂O₁₁) — включает глюкозу и фруктозу
    • мальтоза (C₁₂H₂₂O₁₁) — состоящая из двух молекул глюкозы, соединенных полосой
    • трегалоза (C₁₂H₂₂O₁₁) — состоящая из двух молекулы глюкозы; также называемая тремалозой или микозой
    • мелибиоза (C₁₂H₂₂O₁₁) — включает глюкозу и галактозу
    • целлобиозу (C₁₂H₂₂O₁₁) — образованную из двух молекул глюкозы

    Полисахариды

    Полисахариды — это группа углеводов, которые содержат несколько моносахаридов.Это могут быть мономеры (отдельные молекулы) или полимеры (несколько молекул, которые связаны вместе) сахаров. Крахмалы включены в эту категорию.

    • гликоген (C 6 H 10 O 5 ) n
    • целлюлоза (C 6 H 10 O 5 ) n
    • амилоза (C 6 H 10 O 5 ) n
    • ксантановая камедь (C 35 H 49 O 29 )
    • каррагинан (C 24 H 36 O 25 S 2 -2 )
    • алактоманнан (C 18 H 32 O 16 )

    Липиды

    Липид — это жирное или воскообразное органическое соединение.Они преимущественно состоят из углеводородов. Существуют десятки липидов, многие из которых имеют чрезвычайно сложные молекулярные формулы.

    • триглицериды — глицерин (C 3 H 8 O 3 ) в сочетании с жирными кислотами; существует много типов триглицеридов с различной молекулярной формулой, включая насыщенные, ненасыщенные и трансжиры
    • диглицерид (C 43 H 68 O 5 )
    • цитрат моноглицерида (C 9 H 14 O 9 )
    • фосфоглицериды (CH 2 OH – CHOH – CH 2 OH)
    • глицериды (C 16 H 32 O 4 )
    • церамид (C 36 H 71 NO 4 )
    • археол (C 43 H 88 O 3 )
    • алдархеол (C 86 H 172 O 6 )
    • Интралипид (C 60 H 115 НЕТ 10 P + )

    Белки

    Белки чрезвычайно сложны.Все органы и ткани содержат белки, которые представляют собой молекулы с полимерами аминокислот, скрепленных пептидными связями. Белки состоят из аминокислот. Помимо углерода и водорода они также содержат азот и кислород.

    • инсулин (C 257 H 383 N 65 O 77 S 6 )
    • коллаген (C 65 H 102 N 18 O 21 )
    • эластин ( C 27 H 48 N 6 O 6 )
    • кератин (C 28 H 48 N2O 32 S 4 )
    • окситоцин (C 43 H 66 N 12 O 12 S 2 )
    • тромбин (C 12 H 10 ClN 3 S)
    • актин (C 25 H 34 ClN 5 O 6 )

    Нуклеотиды

    Нуклеотиды — это органические соединения, содержащие азотистое основание, рибозу или дезоксирибозу (моносахариды с пятью атомами углерода), по крайней мере, одну фосфатную группу и водород.Все нуклеотиды, кроме одного, являются нуклеиновыми кислотами. Аденозинтрифосфат также является нуклеотидом.

    Нуклеиновые кислоты

    Нуклеиновые кислоты необходимы для всех форм жизни. Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) являются примерами нуклеиновых кислот. Примеры модифицированных нуклеотидов, из которых состоят нуклеиновые кислоты, включают:

    • инозин (C 10 H 12 N 4 O 5 )
    • псевдоуридин (C 9 H 12 N 2 O 6 )
    • квевозин (C 17 H 23 N 5 O 7 )
    • дигидроуридин (C 9 H 14 N 2 O 6 )
    • вибутозин (C 21 H 28 N 6 O 9 )
    • 3-метилцитидин (C 10 H 15 N 3 O 5 )
    • 5-метилцитидин (C 10 H 15 N 3 O 5 )
    • 2-тиуридин (C 9 H 12 N 2 O 5 S)
    • 4-тиуридин (C 9 H 12 N 2 O 5 S)

    Аденозинтрифосфат

    Аденозинтрифосфат (C 10 H 16 N 5 O 13 P 3 ), обычно называемый аббревиатурой АТФ, является источником энергии, используемой и запасаемой клетками.Фосфаты в АТФ хранят потенциальную энергию, поэтому его описывают как «высокоэнергетическое» органическое соединение.

    Органические соединения повсюду

    Это несколько примеров из множества существующих органических соединений. Эти соединения лежат в основе органической химии, которая является «изучением структуры, свойств, состава, реакций и получения углеродсодержащих соединений». Они играют роль во всех аспектах жизни. Существуют миллионы и миллионы известных органических соединений, и, вероятно, еще больше еще предстоит обнаружить или идентифицировать.

    Расширьте свои знания в области химии

    Независимо от того, изучаете ли вы курс общей химии или изучаете органическую химию, есть вероятность, что вам нужно уметь перечислить или идентифицировать хотя бы некоторые органические соединения. Теперь, когда вы рассмотрели, что такое органическое соединение, несколько примеров органических соединений в разных категориях и их химические формулы, самое время расширить свои знания в области химии другими способами.

    Начните с изучения 20 распространенных примеров основ повседневной жизни.Если это не так сложно, изучите несколько примеров катализаторов. Чем больше вы узнаете сейчас, тем лучше вы будете подготовлены к следующему уроку химии или даже к профессиональной карьере химика или другого занятия, связанного с наукой.

    Что такое белок? | Живая наука

    Белок — это макроэлемент, необходимый для наращивания мышечной массы. Он обычно содержится в продуктах животного происхождения, но также присутствует в других источниках, таких как орехи и бобовые.

    Есть три макроэлемента: белок, жиры и углеводы.Макроэлементы обеспечивают калории или энергию. Организму требуется большое количество макроэлементов для поддержания жизни, отсюда и термин «макро», согласно Медицинскому центру Мак-Кинли Университета Иллинойса. Каждый грамм белка содержит 4 калории. Белок составляет около 15 процентов массы тела человека.

    Химически белок состоит из аминокислот, которые представляют собой органические соединения, состоящие из углерода, водорода, азота, кислорода или серы. По данным Национального института здоровья (NIH), аминокислоты являются строительными блоками белков, а белки — строительными блоками мышечной массы.

    «Когда белок расщепляется в организме, он способствует увеличению мышечной массы, что способствует метаболизму», — сказала Джессика Крэндалл, зарегистрированный диетолог, диетолог, сертифицированный инструктор по диабету и национальный представитель Академии питания и диетологии. «Это также помогает. иммунная система остается сильной. Это помогает вам оставаться сытым. Многие исследования показали, что белок обладает эффектом насыщения ».

    Например, два недавних исследования показали, что чувство сытости или чувство сытости после еды улучшается после употребления закуски с высоким содержанием белка.В исследовании 2014 года, опубликованном в журнале Nutrition, сравнивались послеобеденные закуски из йогурта с высоким содержанием белка, крекеров с высоким содержанием жира и шоколада с высоким содержанием жира. Среди женщин, участвовавших в исследовании, употребление йогурта привело к большему снижению послеобеденного голода по сравнению с шоколадом. Эти женщины также ели меньше за ужином по сравнению с женщинами, которые ели крекеры и шоколад.

    Похожее исследование, опубликованное в 2015 году в Journal of Nutrition, показало, что у подростков, потреблявших послеобеденные закуски с высоким содержанием белка, улучшился аппетит, сытость и улучшилось качество диеты.У подростков также улучшилось настроение и улучшились познавательные способности.

    Сколько белка?

    Институт медицины рекомендует, чтобы от 10 до 35 процентов ежедневных калорий поступало из белков. Как это соотносится с граммами белка, зависит от потребностей человека в калориях. По данным Министерства сельского хозяйства США, количество белковой пищи, которую должен съесть человек, зависит от возраста, пола и уровня физической активности. Большинство американцев едят достаточно продуктов из этой группы, но им нужно делать более постный и разнообразный выбор этих продуктов.

    «Безопасный уровень белка колеблется от 0,8 грамма белка на килограмм веса [2,2 фунта] до 2 граммов белка на килограмм для очень активных спортсменов», — сказал Крэндалл. «Но большинству американцев действительно нужно есть от 1 до 1,2 грамма белка на килограмм веса тела».

    По словам Крэндалла, большинству людей требуется от 20 до 30 граммов белка на один прием пищи. «Например, 2,5 яичных белка на завтрак или 3–4 унции мяса на ужин». Она сказала, что большинство американских женщин даже близко не получают достаточного количества протеина за завтраком.«Это может препятствовать их мышечной массе, метаболизму и уровню гормонов».

    Крэндалл предостерег родителей от чрезмерного потребления белка для своих детей, которые обычно легко получают достаточное количество белка. «Важно сосредоточиться на фруктах и ​​овощах для детей, но белковые добавки для детей — это слишком много», — сказала она. Размышляя о том, как включить белок в рацион детей, родители должны сосредоточиться на цельных продуктах и ​​натуральных источниках.

    Источники белка

    Все продукты питания, приготовленные из мяса, птицы, морепродуктов, бобов и гороха, яиц, переработанных соевых продуктов, орехов и семян, считаются частью группы белков, согласно Министерству сельского хозяйства США.Большинство людей в этой группе едят достаточно еды, но им следует выбирать более постные и разнообразные варианты.

    Помимо животных источников, существует несколько альтернативных источников белка, включая сою, коноплю и сыворотку. Крэндалл сказал, что все варианты хороши и все сводится к личным предпочтениям. Например, сывороточный протеин лучше для наращивания и регенерации мышечной массы, поэтому люди, желающие набрать массу или много тренирующиеся, могут предпочесть его.

    Сывороточный протеин является побочным продуктом сыроварения и поэтому не является веганским.По данным Medical News Today, он обычно содержится в добавках, таких как протеиновые порошки. Согласно исследованию 2008 года, опубликованному в журнале Nutrition & Metabolism, он обычно используется для увеличения безжировой мышечной массы, а также связан с потерей веса. На одну мерную ложку сывороточного протеина приходится 20 граммов протеина.

    Белок конопли поступает из растения конопли, которое не содержит ТГК (активный ингредиент марихуаны), согласно данным Североамериканского промышленного совета по конопле. Конопля доступна в виде семян, порошка и молока.На столовую ложку семян конопли 5,3 грамма белка, около 5 граммов на мерную ложку конопляного порошка и 5 граммов на чашку.

    Соевый белок поступает из соевых бобов и доступен во многих различных формах, включая молоко, тофу, различные заменители мяса, муку, масло, темпе, орехи мисо и эдамаме, по данным Медицинского центра Калифорнийского университета в Сан-Франциско. Крэндалл сказал, что соя — хороший источник белка.

    «Было доказано, что соя содержит немного больше фитоэстрогенов по сравнению с изофлавонами, что действительно помогает увеличить количество антиоксидантов», — сказала она.«Но многие люди не решаются употреблять сою из-за мифа, который связывает ее с раком груди. Но этот миф был сведен к минимуму на основе большого количества доказательств, подтверждающих фактические противораковые свойства сои ». Она указала на исследование 2012 года, опубликованное Американским институтом исследований рака.

    Чтобы получить максимальную пользу от сои, Крэндалл рекомендовал употреблять в пищу цельные продукты, такие как эдамаме. Обработанные формы, такие как тофу, являются следующим лучшим вариантом, за ними следуют протеиновые порошки и напитки.

    Продукты с высоким содержанием белка

    Согласно Мэтью Кэди, зарегистрированному диетологу, пишущему на Bodybuilding.com, некоторые виды мяса с высоким содержанием белка включают:

    • Стейк сверху или снизу (23 грамма белка на порцию в 3 унции)
    • Нежирный говяжий фарш (18 г на порцию 3 унции)
    • Свиные отбивные (26 г на порцию 3 унции)
    • Куриная грудка без кожи (24 грамма на порцию 3 унции)
    • Грудка индейки (24 грамма на порцию 3 унции) порции)
    • нерка (23 грамма на порцию в 3 унции)
    • желтоперого тунца (25 граммов на порцию в 3 унции)

    Молочные продукты с высоким содержанием белка включают:

    • Греческий йогурт (23 грамма на 8 унций) порция)
    • Творог (14 граммов на порцию в полчашки)
    • Яйца (6 граммов на большое яйцо)
    • 2-процентное молоко (8 граммов на чашку)

    Некоторые другие продукты с высоким содержанием белка:

    • Некоторые консервы, такие как сардины, анчоусы и тунец. в среднем около 22 граммов белка на порцию
    • Темно-синие бобы (20 граммов на чашку)
    • Чечевица (13 граммов на четверть стакана)
    • Арахисовое масло (8 граммов на 2 столовые ложки)
    • Смешанные орехи (6 граммов на 2 столовые ложки) на порцию)
    • Квиноа (8 граммов на порцию из 1 чашки)
    • Эдамаме (8 граммов на половину чашки)
    • Лапша соба (12 граммов на порцию 3 унции)

    Полноценные или идеальные белки

    Люди могут производить одни аминокислоты, но другие должны получать с пищей.Согласно NIH, девять аминокислот, которые люди не могут производить самостоятельно, называются незаменимыми аминокислотами. Незаменимые аминокислоты: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

    По словам Крэндалла, белковые продукты, содержащие все незаменимые аминокислоты, называются полноценными белками. Их также иногда называют идеальными белками или высококачественными белками. Полноценные белки включают мясо и молочные продукты, киноа, семена конопли, семена чиа и сою.

    Многие растительные белки не являются полноценными белками. К ним относятся бобы, злаки и бобовые, а также овощи, содержащие небольшое количество белка. По данным Массачусетского университета в Амхерсте, неполные белки можно объединить, чтобы создать полноценные белки. Фасоль и рис, арахисовое масло и цельнозерновой хлеб, макароны и сыр являются примерами комбинаций, которые создают полноценные белки.

    В течение долгого времени диетологи считали, что дополнительные белки нужно есть вместе, чтобы получить полноценный белок.Но теперь стало понятно, что продукты не нужно есть в одно и то же время, — сказал Крэндалл. Если вы едите самые разные продукты, вы, как правило, можете производить полноценные белки, даже если вы вегетарианец.

    Диета с высоким содержанием белка

    Институт медицины рекомендует, чтобы от 10 до 35 процентов дневных калорий приходилось на белок. Большинство американцев не дотягивают до 35-процентной отметки; По данным NIH, они потребляют от 12 до 18 процентов своих калорий в виде белков. Таким образом, большинство коммерческих планов высокобелковой диеты предполагают потребление на верхних уровнях рекомендованного диапазона.Например, диета Аткинса позволяет получать до 29 процентов калорий из белка, а диета Саут-Бич предполагает уровень белка около 30 процентов. Однако некоторые диеты с высоким содержанием белка составляют более 35 процентов.

    Эффективность и безопасность диет с высоким содержанием белка все еще изучается. Часто они приводят к быстрому снижению веса, но их общая устойчивость неясна. Один обзор исследований диеты с высоким содержанием белка в 2011 году показал, что «хотя половина исследований показала более высокую потерю веса при диете с высоким содержанием белка, три из четырех исследований с самым длительным вмешательством не показали статистической разницы в потере веса.”

    Более того, диета с высоким содержанием белка может нести определенный риск для здоровья. Они обычно выступают за сокращение углеводов, что может привести к дефициту питательных веществ, дефициту клетчатки, головной боли, запорам, повышенному риску сердечных заболеваний и ухудшению функции почек у тех, кто страдает заболеванием почек, по данным клиники Майо.

    Крэндалл не рекомендует диеты с высоким содержанием белка, потому что они, как правило, не нужны. «Все больше исследований показывают, что американцы получают достаточно белка», — сказала она.Проблема в том, что мы неправильно распределяем наш белок. «Более важно, чтобы мы концентрировались на получении белка с каждым приемом пищи, съедая его в течение первого часа после пробуждения, а затем каждые 4-6 часов после этого».

    Получение достаточного количества белка через определенные промежутки времени способствует увеличению мышечной массы и общему здоровью в долгосрочной перспективе.

    Крэндалл также скептически относится к продуктам с повышенным содержанием белка. «Сейчас есть много продуктов, в которые добавлен белок. Но разве это вас наполняет? Это дает вам то, что вам нужно? Удостоверьтесь, что вы немного думаете о планировании еды … не позволяйте этому стать привычным вариантом для приема пищи.”

    Идеальная протеиновая диета

    Идеальная протеиновая диета — это медицинская диета, разработанная более 20 лет назад французским доктором Тран Тьен Чаном. Тренер в лицензированной клинике или поставщик медицинских услуг наблюдает за участниками. Для некоторых участников может потребоваться согласие поставщиков медицинских услуг.

    Идеальная белковая диета — это низкоуглеводная, низкокалорийная и высокобелковая диета, цель которой — помочь в потере веса, обеспечивая организм нужным количеством и видом белка, а также стабилизируя уровень сахара в крови.Он состоит из четырех этапов. В течение первых трех этапов участники съедают по крайней мере один заранее упакованный продукт Ideal Protein в определенных пропорциях в день. Во время первой фазы, на которой происходит большая часть потери веса, участники ежедневно едят три раза в день.

    Протеиновые коктейли

    «Добавки предназначены только для дополнительных целей», — сказал Крэндалл. Поэтому она не рекомендует ежедневно принимать протеиновые коктейли. Однако иногда у людей возникают серьезные поведенческие препятствия к употреблению цельных продуктов.«Если они чувствуют, что не могут готовить или есть цельную пищу… [протеиновые коктейли] могут быть хорошим вариантом Б».

    Если вы собираетесь использовать протеиновые коктейли, Крэндалл рекомендует выбирать тот, который содержит более 20 граммов протеина. «Большинство американцев хотят употреблять низкокалорийные напитки с низким содержанием углеводов», — сказала она.

    Важно подумать о том, что вы добавляете в протеиновые коктейли. Если вы используете протеиновый порошок для приготовления коктейля, Крэндалл предлагает смешать его с водой, обезжиренным молоком или заменителем молока.«Я настоятельно рекомендую не добавлять фрукты — они могут стать очень калорийными — как пирог в чашке». Однако добавление овощей может добавить антиоксиданты и витамины.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *